THE JONES POLYNOMIAL OF KNOTS WITH SYMMETRIC UNION PRESENTATIONS

Toshifumi Tanaka

Abstract. A symmetric union is a diagram of a knot, obtained from diagrams of a knot in the 3-space and its mirror image, which are symmetric with respect to an axis in the 2-plane, by connecting them with 2-tangles with twists along the axis and 2-tangles with no twists. This paper presents an invariant of knots with symmetric union presentations, which is called the minimal twisting number, and the minimal twisting number of 10_{42} is shown to be two. This paper also presents a sufficient condition for non-amplicehairality of a knot with a certain symmetric union presentation.

1. Introduction

A symmetric union, which is a generalized operation of the connected sum of a knot in the 3-space and its mirror image, was first introduced by Kinoshita and Terasaka [6]. They showed that the Alexander polynomial depends only on the parity of the number of half-twists of a trivial tangle on the symmetry axis and that the determinant is independent of the number of half-twists. In recent years, Lamm [7] generalized their results and also considered the relationship between a symmetric union and a ribbon knot. (See [3] for the definition.) It is easily seen that every knot with a symmetric union presentation is a ribbon knot. On the other hand, the converse question is still open. Lamm showed that every ribbon knot with minimal crossing number ≤ 10 has a symmetric union presentation, except 10_{87} [7]. The knot 10_{87} was also shown to be a symmetric union later in [2] and it is known that all two-bridge ribbon knots can be represented as symmetric unions. In fact, Lamm [8] has shown that certain three infinite families of two-bridge ribbon knots can be presented as a symmetric union. Recently, Lisca [11] has shown that the three families contain all two-bridge ribbon knots.

Let $\overline{V}(t) = V_L(t)/V_{O_n}(t)$ for an oriented link L of n components, where $V_L(t)$ and $V_{O_n}(t)$ are the Jones polynomial of L and the n-component trivial link O^n respectively. (See Section 2 for the definition.) We set $i = \sqrt{-1}$. In this
paper we show the following formula for the Jones polynomial of knots with symmetric union presentations and its topological properties.

Theorem 1.1. Let \overline{K} be a knot with a symmetric union presentation of the form $D_K \cup D_K^*(\infty, m)$. Then

$$V_{\overline{K}}(t) = (-1)^m t^{-m} V_{D_K \cup D_K^*(\infty, 0)}(t) + (1 - (-1)^m t^{-m}) V_{D_K \cup D_K^*(\infty, \infty)}(t).$$

Corollary 1.2. Let \overline{K} be a knot with a symmetric union presentation of the form $D_K \cup D_K^*(\infty, m)$ and s be a positive integer. If $m \equiv 0 \mod s$, then

$$V_{\overline{K}}(-\exp(2\pi i s)) = V_{\overline{K}}(-\exp(2\pi i)) V_{K^*}(-\exp(2\pi i)).$$

A knot is called **amphicheiral** if it is isotopic to its mirror image. By Theorem 1.1, we have the following.

Theorem 1.3. Let \overline{K} be a knot with a symmetric union presentation of the form $D_K \cup D_K^*(\infty, m)$. Then

$$t^m V_{\overline{K}}(t) + (-1)^m V_{\overline{K}}(t^{-1}) = (t^m + (-1)^m) V_K(t) V_K(t^{-1}).$$

In particular, if \overline{K} is amphicheiral, then $V_{\overline{K}}(t) = V_K(t) V_K(t^{-1})$.

Now we restrict to the special values of the Jones polynomial. First we consider the values of the first derivative of the Jones polynomial at -1. We denote a (Laurent) polynomial $f(t)$ evaluated at r by $[f(t)]_{t=r}$.

Theorem 1.4. Let \overline{K} be a knot with a symmetric union presentation of the form $D_K \cup D_K^*(\infty, m)$. Then

$$\left[\frac{d}{dt} V_{\overline{K}}(t)\right]_{t=-1} = m \{ V_K(-1)^2 - V_{D_K \cup D_K^*(\infty, \infty)}(-1) \}.$$

Corollary 1.5. Let \overline{K} be a knot with a symmetric union presentation of the form $D_K \cup D_K^*(\infty, m)$. Then $\left[\frac{d}{dt} V_{\overline{K}}(t)\right]_{t=-1} \equiv 0 \mod 8|m|.$

Next we consider the values of the first derivative of the Jones polynomial at i.

Theorem 1.6. Let \overline{K} be a knot with a symmetric union presentation of the form $D_K \cup D_K^*(\infty, m)$. Then we have $\left[\frac{d}{dt} V_{\overline{K}}(t)\right]_{t=i} = a + bi$ where $a, b \in 4\mathbb{Z}$. In particular, if m is even $(1 \leq i \leq k)$ or \overline{K} is amphicheiral, then $\left[\frac{d}{dt} V_{\overline{K}}(t)\right]_{t=i} \in 4\mathbb{Z}$.

Remark 1.7. Theorem 1.1, Corollary 1.2, Theorem 1.4 and Theorem 1.6 can be generalized to the case of $D \cup D^*(\infty, m_1, \ldots, m_k)$. However we do not give the detail since the goal of this paper is to give an obstruction for a knot to have a symmetric union presentation $D_K \cup D_K^*(\infty, m)$.
In this paper, all knots and links are oriented unless otherwise stated. In Section 2, we give the definitions of the Jones polynomial and a symmetric union. In Section 3, we shall prove Theorem 1.1, Corollary 1.2 and Theorem 1.3. In Section 4, we shall prove Theorem 1.4 and Corollary 1.5 and observe a topological property of the Jones polynomial with respect to a symmetric union in special cases. In Section 5, we shall prove Theorem 1.6 and show a calculation in the case of the example in Section 4. In Section 6, we introduce the minimal twisting number of a knot with a symmetric union presentation. It is the smallest number of trivial tangles (with twists) appearing on the axis of a symmetric union presentation of a knot, the minimum taken over all symmetric union presentations for the knot. We shall show that the minimal twisting number of a knot 10_{12} is equal to two. In Section 7, we consider the amphicheirality of symmetric unions.

Acknowledgements. This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B), 2011-2014(23740046).

2. Definitions

Definition 2.1. Let K be a knot in the 3-space. We denote a diagram of K by D_K. The bracket polynomial of a diagram of a knot K, $\langle D_K \rangle$ can be defined as a polynomial which satisfies the following identities.

i) $\langle \bigcirc \bigcirc \rangle = 1$,

ii) $\langle D_K \sqcup \bigcirc \bigcirc \rangle = -(A^2 + A^{-2})\langle D_K \rangle$,

iii) $\langle \bigtriangleup \bigtriangleup \rangle = A\langle \bigtriangleup \rangle + A^{-1}\langle \bigtriangleup \rangle$.

We define $V_{D_K}(t) \in \mathbb{Z}[t^{1/2}, t^{-1/2}]$ by $V_{D_K}(t) = \{(-A^3)^{-\omega(D_K)}\langle D_K \rangle\}_{t^{1/2}, t^{-1/2}}$ for any diagram D_K for K, where ω is the writhe of the diagram. (The writhe is the number of positive crossings of D_K minus the number of negative crossings of D_K.) It is shown that $V_{D_K}(t)$ is an invariant of the link [5], [9]. Then we denote $V_{D_K}(t)$ by $V_K(t)$ and call it the Jones polynomial of K.

Here we define a symmetric union in [7] as follows. We denote the tangles made of half twists by integers $n \in \mathbb{Z}$ and the horizontal trivial tangle by ∞ as in Figure 1.

Definition 2.2. Let D be an unoriented knot diagram and D^* the diagram D reflected at an axis in the plane. If in the symmetric placement of D and D^* we replace the tangles $T_i = 0, (i = 0, \ldots, k)$ on the symmetry axis by $T_0 = \infty$ and $T_i = m_i \in \mathbb{Z}$ for $i = 1, \ldots, k$, we call the result a symmetric union of D and D^* and write $D \sqcup D^*(\infty, m_1, \ldots, m_k)$. The partial knot \hat{K} of the symmetric union is the knot given by the diagram D. See Figure 1 for an illustration of the definition.

If a knot K has a diagram $D \sqcup D^*(\infty, m_1, \ldots, m_k)$, then the diagram is called a symmetric union presentation for K and we say that the knot K is a symmetric union.
3. A formula of the Jones polynomial

Proof of Theorem 1.1. By using a skein relation of Kauffman bracket polynomial, we have

\[
\langle D_K \cup D_K^* (\infty, m) \rangle = A^{m/|m|} \langle D_K \cup D_K^* (\infty, m-1) \rangle + F_1 \langle D_K \cup D_K^* (\infty, \infty) \rangle
\]

\[
= (A^{m/|m|})^{|m|} \langle D_K \cup D_K^* (\infty, 0) \rangle + (F_1 + \cdots + F_{|m|}) \langle D_K \cup D_K^* (\infty, \infty) \rangle
\]

\[
= A^m \langle D_K \cup D_K^* (\infty, 0) \rangle + (\sum_{j=1}^{|m|} F_j) \langle D_K \cup D_K^* (\infty, \infty) \rangle,
\]

where each \(F_j\) is the polynomial obtained by applying the skein relation and a finite number of type I Reidemeister moves [9] to the bracket polynomial. In fact, a single type I Reidemeister move changes the bracket polynomial by a factor of \(-A^{\pm 3}\) ([9], Lemma 3.2).

Now we calculate a formula of \(\sum_{j=1}^{|m|} F_j\) by considering the unknot instead of \(K\) as follows. We assume that \(D_K\) is a diagram as in Figure 2 so that we have a symmetric union of the unknot. We denote the diagram by \(D_o\).

Then the resultant symmetric union is a diagram of the unknot with \(r\) crossings where \(r = |m|\) such that it can be transformed into a diagram of the unknot with no crossings by \(r\) type I Reidemeister moves. Thus we have

\[
\langle D_o \cup D_o^* (\infty, m) \rangle = (-A^{-3m/|m|})^{|m|} = (-1)^{|m|} A^{-3m},
\]

\[
\langle D_o \cup D_o^* (\infty, 0) \rangle = 1,
\]
\[\langle D_o \cup D_o^*(\infty, \infty) \rangle = -A^{-2} - A^2. \]

Then we have
\[\sum_{j=1}^{|m|} F_j = \frac{\langle D_o \cup D_o^*(\infty, m) \rangle - A^m \langle D_o \cup D_o^*(\infty, 0) \rangle}{\langle D_o \cup D_o^*(\infty, \infty) \rangle} \]
\[= \frac{(-1)^{|m|}A^{-3m} - A^m}{-A^{-2} - A^2} = \frac{(-A^{-3})^m - A^m}{-A^{-2} - A^2}. \]

Since \(\omega(D_K \cup D_K^*(\infty, m)) = -m \), we obtain that
\[V_{D_K \cup D_K^*(\infty, m)}(A) = (-A^3)^m \langle D_K \cup D_K^*(\infty, m) \rangle \]
\[= (-A^3)^m \{ A^m \langle D_K \cup D_K^*(\infty, 0) \rangle + \frac{(-A^{-3})^m - A^m}{-A^{-2} - A^2} \langle D_K \cup D_K^*(\infty, \infty) \rangle \} \]
\[= (-1)^m A^4 \langle D_K \cup D_K^*(\infty, 0) \rangle + \frac{1 - (-1)^m A^4}{-A^{-2} - A^2} \langle D_K \cup D_K^*(\infty, \infty) \rangle. \]

Using \(t^{1/2} = A^{-2} \), we have
\[V_{D_K \cup D_K^*(\infty, m)}(t) \]
\[= (-1)^m t^{-m} V_{D_K \cup D_K^*(\infty, 0)}(t) + (1 - (-1)^m t^{-m}) V_{D_K \cup D_K^*(\infty, \infty)}(t). \]

Remark 3.1. By a result of Eisermann ([1], Theorem 1), we know that \(V_{D_K \cup D_K^*(\infty, \infty)}(t) \) in the statement of Theorem 1.1 is always a Laurent polynomial.

Proof of Corollary 1.2. By Theorem 1.1 and a property that the Jones polynomial is multiplicative under connected sum of knots ([9], p. 29), we have
\[V_K(- \exp(\frac{2\pi i}{s})) = V_{D_K \cup D_K^*(\infty, 0)}(- \exp(\frac{2\pi i}{s})) \]
\[= V_K(- \exp(\frac{2\pi i}{s}) \cdot V_K(- \exp(\frac{2\pi i}{s})). \]
Proof of Theorem 1.3. The first part of the theorem is obtained as follows. By Theorem 1.1, we have
\[
\begin{align*}
t^m V_{\mathcal{K}}(t) + (-1)^m V_{\mathcal{K}}(t^{-1}) \\
= t^m ((-1)^m t^{-m} V_{D_K \cup D_\infty(\infty,0)}(t) + (1 - (-1)^m t^{-m}) V_{D_K \cup D_\infty(\infty,\infty)}(t)) \\
+ (-1)^m ((-1)^m t^{-m} V_{D_K \cup D_\infty(\infty,0)}(t^{-1}) + (1 - (-1)^m t^{-m}) V_{D_K \cup D_\infty(\infty,\infty)}(t^{-1})) \\
= (-1)^m V_{D_K \cup D_\infty(\infty,0)}(t) + (t^m - (-1)^m) V_{D_K \cup D_\infty(\infty,\infty)}(t) \\
+ t^m V_{D_K \cup D_\infty(\infty,0)}(t) + ((-1)^m - t^{-m}) V_{D_K \cup D_\infty(\infty,\infty)}(t) \\
= (t^m + (-1)^m) V_{D_K \cup D_\infty(\infty,0)}(t) \\
= (t^m + (-1)^m) V_{\mathcal{K}}(t) \cdot V_{\mathcal{K}}(t^{-1}).
\end{align*}
\]

The latter part of the theorem follow immediately from the first part because $V_{\mathcal{K}}(t) = V_{\mathcal{K}}(t^{-1})$ if \mathcal{K} is amphicheiral ([9], p. 29).

\[\Box\]

4. Evaluation of the derivative at -1

Proof of Theorem 1.4. By Theorem 1.1, we know that
\[
\frac{d}{dt} V_{\mathcal{K}}(t) = \frac{d}{dt} ((-1)^m t^{-m} V_{D_K \cup D_\infty(\infty,0)}(t)) \\
+ \frac{d}{dt} ((1 - (-1)^m t^{-m}) V_{D_K \cup D_\infty(\infty,\infty)}(t)).
\]

Since
\[
\frac{d}{dt} ((-1)^m t^{-m} V_{D_K \cup D_\infty(\infty,0)}(t)) = V_{D_K}(t) \cdot V_{D_K}(t^{-1})
\]
and
\[
\frac{d}{dt} ((1 - (-1)^m t^{-m}) V_{D_K \cup D_\infty(\infty,\infty)}(t)) = - \frac{d}{dt} V_{D_K}(t^{-1}) |_{t^{-1}} = 0,
\]
we have $[\frac{d}{dt} (V_{D_K}(t) \cdot V_{D_K}(t^{-1}))]_{t^{-1}} = 0.$

Then
\[
[\frac{d}{dt} ((-1)^m t^{-m} V_{D_K \cup D_\infty(\infty,0)}(t))]_{t^{-1}} = \frac{d}{dt} ((-1)^m t^{-m}) |_{t^{-1}} (V_{D_K}(-1))^2 = m(V_{D_K}(-1))^2.
\]

On the one hand, we have
\[
[\frac{d}{dt} ((1 - (-1)^m t^{-m}) V_{D_K \cup D_\infty(\infty,\infty)}(t))]_{t^{-1}} = -m [V_{D_K \cup D_\infty(\infty,\infty)}(t)]_{t^{-1}} + \frac{d}{dt} V_{D_K \cup D_\infty(\infty,\infty)}(t) |_{t^{-1}} = -m V_{D_K \cup D_\infty(\infty,\infty)}(-1).
\]

Therefore we have
\[
[\frac{d}{dt} V_{\mathcal{K}}(t)]_{t^{-1}} = m V_{D_K}(-1)^2 - m V_{D_K \cup D_\infty(\infty,\infty)}(-1). \quad \Box
\]
Here we need the following theorem due to Eisermann to prove Corollary 1.5.

Theorem 4.1 ([1]). If K is a ribbon link, then $\nabla_K(-1) \equiv 1 \mod 8$.

Proof of Corollary 1.5. By Theorem 1.4, we have

$$\left\lfloor \frac{d}{dt} V_K(t) \right\rfloor_{t=-1} = mV_K(-1)^2 - m\nabla_{D_K \cup D^*_K}(\infty, \infty)(-1)$$

$$= mV_{D_K \cup D^*_K}(\infty, 0)(-1) - m\nabla_{D_K \cup D^*_K}(\infty, \infty)(-1).$$

By Theorem 4.1, we know that $V_{D_K \cup D^*_K}(\infty, 0)(-1)$ and $\nabla_{D_K \cup D^*_K}(\infty, \infty)(-1) \equiv 1 \mod 8$. Thus we have $m(V_{D_K \cup D^*_K}(\infty, 0)(-1) - \nabla_{D_K \cup D^*_K}(\infty, \infty)(-1)) \equiv 0 \mod 8|m|$. □

Example 4.2. Let K_m ($m \in \mathbb{Z}$) be a symmetric union as described in Figure 3.

![Figure 3](image)

Then by Theorem 1.4, $\left\lfloor \frac{d}{dt} V_{K_m}(t) \right\rfloor_{t=-1} = m \cdot 9 - m = 8m$. Thus we know that K_m cannot be expressed as $D_K \cup D^*_K(\infty, n)$ if m is not divisible by $|n|$. In particular, if m is odd, then K_m cannot have a symmetric union presentation $D_K \cup D^*_K(\infty, n)$ where n is even.

5. Evaluation of the derivative at $\sqrt{-1}$

We say that a Laurent polynomial $f(t) \in \mathbb{Z}[t, t^{-1}]$ is symmetric if it satisfies that $f(t) = f(t^{-1})$. For example, the Jones polynomial of an amphicheiral knot is known to be symmetric ([9], p. 29).

Proposition 5.1. Let K be a knot. Then we have

$$\left\lfloor \frac{d}{dt} V_K(t) \right\rfloor_{t=\sqrt{-1}} = a + bi,$$

where $a, b \in 2\mathbb{Z}$.

Proof. By results of Jones [4], $V_K(t)$ can be divided by $(t-1)(t^3-1)$. Let $V_K(t) = (t-1)(t^3-1)w(t)$. Then $V_K(t) = (t-1)^2(t^2+t+1)w(t)$ and $\frac{d}{dt} V_K(t) =$
2(t - 1)(t^2 + t + 1)w(t) + (t - 1)^2 \frac{d}{dt}((t^2 + t + 1)w(t))$. So \(\frac{d}{dt}V_L(t)|_{t=1} = -2(i + 1)w(i) - 2i(\frac{d}{dt}((t^2 + t + 1)w(t)))|_{t=1} \).

Proof of Theorem 1.6. By Theorem 1.1, we have

\[
\frac{d}{dt}V_L(t) = \frac{d}{dt}((-1)^{m-t^m})V(D_{K} \cup D_{K})(\infty, 0)(t) + (-1)^{m-t^m}\frac{d}{dt}V(D_{K} \cup D_{K})(\infty, 0)(t) \\
\quad + \frac{d}{dt}(1 - (-1)^{m-t^m})V(D_{K} \cup D_{K})(\infty, \infty)(t) \\
\quad + (1 - (-1)^{m-t^m})\frac{d}{dt}V(D_{K} \cup D_{K})(\infty, \infty)(t).
\]

Since \(V_L(i) = (\sqrt{2})^{n(L)-1} \) for any ribbon knot \(L \) [13], where \(n(L) \) is the number of components of \(L \), we know that \(V(D_{K} \cup D_{K})(\infty, \ell)(i) = 1 (\ell = 0, \infty) \). Then we have

\[
\left[\frac{d}{dt}V_L(t) \right]_{t=1} = \left[\frac{d}{dt}((-1)^{m-t^m}) \right]_{t=1} + \left[(-1)^{m-t^m}\frac{d}{dt}V(D_{K} \cup D_{K})(\infty, 0)(t) \right]_{t=1} \\
\quad + \left[\frac{d}{dt}(1 - (-1)^{m-t^m}) \right]_{t=1} \\
\quad + \left[(1 - (-1)^{m-t^m})\frac{d}{dt}V(D_{K} \cup D_{K})(\infty, \infty)(t) \right]_{t=1}.
\]

Since \(\left[\frac{d}{dt}((-1)^{m-t^m}) \right]_{t=1} + \left[\frac{d}{dt}(1 - (-1)^{m-t^m}) \right]_{t=1} = 0 \), we have

\[
\left[\frac{d}{dt}V_L(t) \right]_{t=1} = \left[(-1)^{m-t^m}\frac{d}{dt}V(D_{K} \cup D_{K})(\infty, 0)(t) \right]_{t=1} \\
\quad + \left[(1 - (-1)^{m-t^m})\frac{d}{dt}V(D_{K} \cup D_{K})(\infty, \infty)(t) \right]_{t=1}.
\]

To prove the theorem, we show that

\[
\left[\frac{d}{dt}V(D_{K} \cup D_{K})(\infty, 0)(t) \right]_{t=1}, \left[\frac{d}{dt}V(D_{K} \cup D_{K})(\infty, \infty)(t) \right]_{t=1} \in 4\mathbb{Z}
\]
as follows. First we need the following lemma.

Lemma 5.2. Let \(a(t) \) be a symmetric Laurent polynomial. If \(a(1) = 0 \), then \(a(t) \) can be divided by \((t^{1/2} - t^{-1/2})^2 \).

Proof. By the assumption, we know that \(a(t) \) can be divided by \(t - 1 \) by the factor theorem. Since \(a(t) \) is symmetric, \(a(t) \) can be also divided by \(t^{1-1} \). \(\square \)

By the fact that \(V_L(1) = (\sqrt{2})^{n(L)-1} \) for any link \(L \) [10], we know that

\[
V(D_{K} \cup D_{K})(\infty, 0)(1) = V(D_{K} \cup D_{K})(\infty, \infty)(1) = 1.
\]

Then by Lemma 5.2, we know that

\[
V(D_{K} \cup D_{K})(\infty, 0)(t) - 1 \quad \text{and} \quad V(D_{K} \cup D_{K})(\infty, \infty)(t) - 1
\]
can be divided by \((t^{1/2} - t^{-1/2})^2\). Thus each of \(V_{D_K \cup D_K^*(\infty,0)}(t)\) and
\(\overline{V_{D_K \cup D_K^*(\infty,0)}}(t)\) has a form of \((t^{1/2} - t^{-1/2})^2w(t) + 1\) where \(w(t)\) is a certain symmetric Laurent polynomial. Then we have
\[
\frac{d}{dt}V_{D_K \cup D_K^*(\infty,\ell)}(t)|_{t=\pm i} = 2w(i) - \frac{d}{dt}w(t)|_{t=\pm i} \quad (\ell = 0, \infty).
\]
Note that \(w(i) = 0\). Actually by the fact that \(V_L(t) = (-\sqrt{2})^{m(L)-1}\) for any proper link \(L\) with trivial Arf invariant \([12]\) and the fact that a symmetric union is a proper ribbon link \([7]\) with trivial Arf invariant, we know that
\(\overline{V_{D_K \cup D_K^*(\infty,\ell)}}(t)|_{t=\pm i} = 1\). So we have
\(-2)w(i) = \overline{V_{D_K \cup D_K^*(\infty,\ell)}}(t)|_{t=\pm i} = 1 = 0\). Thus
\(w(i) = 0\). Now it is easily seen that \(\frac{d}{dt}w(t)|_{t=\pm i} \in 2\mathbb{Z}\) since \(w(t)\) is a symmetric
Laurent polynomial. Thus \(\left[\frac{d}{dt}V_{D_K \cup D_K^*(\infty,\ell)}(t)\right]|_{t=\pm i} \in 4\mathbb{Z}\). Then we know that
\(\frac{d}{dt}\overline{V_{K}(t)}|_{t=\pm i}\) has a form \(a + bi\) where \(a, b \in 4\mathbb{Z}\).

In the case when \(m\) is even, both of \([-1)^m t^{-m}\] and \([1 - (-1)^m t^{-m}]\) are integers. Thus we have
\[
\left[\frac{d}{dt}V_{K}(t)\right]|_{t=\pm i} \in 4\mathbb{Z}.
\]

We denote the complex conjugate of a complex number \(x\) by \(\overline{x}\). Then we can easily see the following lemma.

Lemma 5.3. For any Laurent polynomial \(a(t)\), we have
\[
\frac{d}{dt}a(t)|_{t=\pm i} = \frac{1}{i} \frac{d}{dt}a(t^{-1})|_{t=\pm i}.
\]

If \(\overline{K}\) is amphicheiral, then
\(\left[\frac{d}{dt}\overline{V_{K}(t)}\right]|_{t=\pm i} = \left[\frac{d}{dt}\overline{V_{K}(t^{-1})}\right]|_{t=\pm i}\) since
\(\overline{V_{K}(t)} = V_{\overline{K}}(t^{-1})\) \([9], p. 29\). So by Lemma 5.3, we know that
\(\left[\frac{d}{dt}\overline{V_{K}(t)}\right]|_{t=\pm i}\) is an integer.

So we have
\(\left[\frac{d}{dt}\overline{V_{K}(t)}\right]|_{t=\pm i} \in 4\mathbb{Z}\). This completes the proof. \(\square\)

Example 5.4. Let \(K_m\) be a knot in Figure 3 again. Then by Theorem 1.1, we have
\[
\frac{d}{dt}V_{K}(t) = \left[(-1)^m t^{-m} \frac{d}{dt}V_{3_1 \# 3_1^*}(t) + (1 - (-1)^m t^{-m}) \frac{d}{dt}V_{O^2}(t)\right]|_{t=\pm i} = i^m \cdot 4 + (1 - i^m) \cdot 0 = 4i^m,
\]
where \(O^2\) is a 2-component trivial link and \(3_1 \# 3_1^*\) is a connected sum of the knot \(3_1\) \([9], p. 5\) and the mirror image \(3_1^*\). Thus by Theorem 1.6, if \(m\) is an odd integer, we know that \(K_m\) cannot be expressed as \(D_K \cup D_K^*(\infty, n)\) where \(n\) is even.
6. The minimal twisting number

In this section, we introduce the minimal twisting number for a knot with a symmetric union presentation.

Definition 6.1. We call the number \(k \) of \(D_K \cup D^*_K(\infty, m_1, \ldots, m_k) \) the twisting number of the symmetric union. The minimal twisting number of a knot \(\overline{K} \) with a symmetric union presentation is the smallest number of the twisting numbers of all symmetric union presentations for \(\overline{K} \). We denote it by \(\text{tw}(\overline{K}) \).

By the definition, we have the following.

Proposition 6.2. The minimal twisting number is an invariant of a knot with a symmetric union presentation.

Remark 6.3. Let \(K \) be a knot with a symmetric union presentation. If \(\text{tw}(K) = 0 \), then \(K \) is a connected sum of a knot and its mirror image. If \(\text{tw}(K) = 1 \), then \(K \) is a symmetric union of Kinoshita-Terasaka type [6]. The minimal twisting number is not additive under connected sum in general since \(\text{tw}(K \# K^*) = 0 \) for any knot \(K \).

Now we consider the following problem.

Problem. Is there a knot \(K \) with a symmetric union presentation which satisfies \(\text{tw}(K) \geq 2 \)?

Example 6.4. For each knot \(K \) in the set of knots \(\{6_1, 8_8, 8_{20}, 9_{46}, 10_3, 10_{22}, 10_{35}, 10_{137}, 10_{140}, 10_{153} \} \), we have \(\text{tw}(K) = 1 \). (See [7] for the knots and their symmetric union presentations.)

Remark 6.5. Lamm found symmetric union presentations for all two-bridge ribbon knots [8] and actually, we know that the minimal twisting number of a two-bridge ribbon knot is equal to either one or two according to the result.

By Theorem 1.3, we know that if \(\overline{K} \) is a knot with a symmetric union presentation \(D_K \cup D^*_K(\infty, m) \), which satisfies \(V_K(t) \neq 1 \), then

\[
\frac{t^m V_{\overline{K}}(t) + (-1)^m V_{\overline{K}}(t^{-1})}{t^m + (-1)^m}
\]

is reducible polynomial over \(\mathbb{Z} \). By using this property, we show the following.

Theorem 6.6. \(\text{tw}(10_{42}) = 2 \).

Proof. Since \(10_{42} \) has a symmetric union presentation as in Figure 4, we know that \(\text{tw}(10_{42}) \leq 2 \).

Suppose \(10_{42} \) has a symmetric union presentation \(D_K \cup D^*_K(\infty, m) \).

The Jones polynomial of \(10_{42} \) is as follows.

\[
V_{10_{42}}(t) = -t^{-5} + 3t^{-4} - 6t^{-3} + 10t^{-2} - 12t^{-1} + 14 - 13t + 10t^2 - 7t^3 + 4t^4 - t^5.
\]
Then we may assume that f is a knot H. In this case, we have the following five equations.

$$m$$

By Theorem 1.3, we know that H has a form $V_K(t)V_K(t^{-1})$ for some knot K. By calculation, we have

$$H_{10_{42}}^0(t) = -t^{-5} + 3t^{-4} - 7t^{-3} + 10t^{-2} - 12t^{-1} + 15$$

$$H_{10_{42}}^{-1}(t) = -t^{-5} + 4t^{-4} - 6t^{-3} + 10t^{-2} - 13t^{-1} + 13$$

Now we show that $H_{10_{42}}^{\pm 1}(t)$ cannot be $V_K(t)V_K(t^{-1})$ for any knot K. Suppose $H_{10_{42}}^1(t)$ has a form $f(t)f(t^{-1})$ for some Laurent polynomial $f(t) \in \mathbb{Z}[t, t^{-1}]$. Then we may assume that $f(t) = a_5t^5 + a_4t^4 + a_3t^3 + a_2t^2 + a_1t + a_0$ ($a_0a_5 \neq 0$).

In this case, we have that following five equations.

(1) $a_5a_0 = -1$,
(2) $a_5a_1 + a_4a_0 = 3$,
(3) $a_5a_2 + a_4a_1 + a_3a_0 = -7$,
(4) $a_5a_3 + a_4a_2 + a_3a_1 + a_2a_0 = 10$,
(5) $a_5a_4 + a_4a_3 + a_3a_2 + a_2a_1 + a_1a_0 = -12$,
(6) $a_0^2 + a_1^2 + a_2^2 + a_3^2 + a_4^2 = 15$.

By the equation (6), we know that $|a_i| \leq 3$ ($i = 1, 2, 3, 4, 5$) and by the equation (1), we know that $(a_0, a_5) = (1, -1)$ or $(-1, 1)$.

Suppose that $(a_0, a_5) = (-1, 1)$. Then by the equation (3), we have $a_2 + a_4a_1 - a_3 = -7$ and by the equation (2), we have $a_1 = a_4 + 3$. So $(a_1, a_4) = (0, -3)$ or $(1, -2)$ or $(2, -1)$ or $(3, 0)$. If $(a_1, a_4) = (1, -2)$ or $(2, -1)$, then we have

$$\begin{cases} a_2 - a_3 = -5 \\ a_2^2 + a_3^2 = 8 \end{cases}$$

by the equations (3) and (6). Then $a_3 \notin \mathbb{Z}$.
If \((a_1, a_4) = (0, -3)\) or \((3, 0)\), then we have
\[
\begin{aligned}
 a_2 - a_3 &= -7 \\
 a_2^2 + a_3^2 &= 4
\end{aligned}
\]
by the equations (3) and (6). Then \(a_3 \notin \mathbb{Z}\).

Suppose that \((a_0, a_3) = (1, -1)\). Then by the equation (2), we have \(a_4 = a_1 + 3\). So \((a_1, a_4) = (0, 3)\) or \((-1, 2)\) or \((-2, 1)\) or \((-3, 0)\). By the equation (3), we have \(-a_2 + a_4 a_1 + a_3 = -7\). If \((a_1, a_4) = (-1, 2)\) or \((-2, 1)\), then we have
\[
\begin{aligned}
 a_2 - a_3 &= 5 \\
 a_2^2 + a_3^2 &= 8
\end{aligned}
\]
by the equations (3) and (6). Then \(a_3 \notin \mathbb{Z}\).

If \((a_1, a_4) = (0, 3)\) or \((-3, 0)\), then we have
\[
\begin{aligned}
 a_3 - a_2 &= -7 \\
 a_2^2 + a_3^2 &= 4
\end{aligned}
\]
by the equations (3) and (6). Then \(a_3 \notin \mathbb{Z}\).

From the above, we have contradiction and we know that \(H_{10_{42}}^1(t)\) does not have a form \(f(t)f(t^{-1})\) for some Laurent polynomial \(f(t)\). Next suppose that \(H_{10_{42}}^{-1}(t)\) has a form \(f(t)f(t^{-1})\) for some polynomial \(f(t) = a_5 t^5 + a_4 t^4 + a_3 t^3 + a_2 t^2 + a_1 t + a_0\) \((a_0 \cdot a_5 \neq 0)\). Then we have that following five equations.

1. \(a_5 a_0 = -1\),
2. \(a_5 a_1 + a_4 a_0 = 4\),
3. \(a_5 a_2 + a_4 a_1 + a_3 a_0 = -6\),
4. \(a_5 a_3 + a_4 a_2 + a_3 a_1 + a_2 a_0 = 10\),
5. \(a_5 a_4 + a_4 a_3 + a_3 a_2 + a_2 a_1 + a_1 a_0 = -13\),
6. \(a_5^2 + a_4^2 + a_3^2 + a_2^2 + a_1^2 = 13\).

By using the same argument above, we have \(\{a_i\} \leq 3\) \((i = 1, 2, 3, 4, 5)\) and \((a_0, a_3) = (1, -1)\) or \((-1, 1)\). Then in each case, we can show that \(a_3 \notin \mathbb{Z}\). Thus we know that \(H_{10_{42}}^{-1}(t)\) cannot be \(V_K(t)V_K(t^{-1})\) for any knot \(K\). This completes the proof. □

Remark 6.7. We can also see that \(\text{tw}(9_{27}) = \text{tw}(10_{99}) = \text{tw}(10_{123}) = 2\). (See [7] for the knots and their symmetric union presentations.)

7. On the amphicheirality of symmetric unions

In this section, we consider symmetric unions related to the following problem.

Problem (Kirby Problem 1.88(C) (Jones)). Is there a non-trivial knot with the same Jones polynomial as the unknot?

Symmetric unions often appear when we construct a non-trivial knot with trivial Alexander polynomial (See [9] for the definition). For example, a knot with symmetric union presentation \(D_O \cup D'O(\infty, m_1, \ldots, m_k)\) with even integers \(m_1, \ldots, m_k\) has trivial Alexander polynomial [7]. (Here \(O\) is the unknot.) Then
it is natural to expect to have a non-trivial knot with trivial Jones polynomial from among such symmetric unions.

By using Theorem 1.3, we have the following.

Proposition 7.1. If there exists a non-trivial, amphicheiral knot with a symmetric union presentation $D_O \cup D'_O(\infty, m)$, then the Jones polynomial is trivial and, in particular, the answer to the above problem is affirmative.

Remark 7.2. For example, 10_{153} has a presentation $D_O \cup D'_O(\infty, m)$ (See [7]), but it is not amphicheiral since it has non-trivial Jones polynomial.

Finally, we give more examples of symmetric unions concerning Theorem 1.3.

Example 7.3. Let $K_{r,s}$ ($r, s \geq 1$) be a knot with a symmetric union presentation as described in Figure 5. We denote the partial knot of the symmetric union by K_c. Then we can find that $K_{r,s}$ is amphicheiral and the Jones polynomial of $K_{r,s}$ is the same as that of $K_c \# K^*_c$ by making use of a result of Watson [14]. Actually, we know that the Khovanov homology of $K_{r,s}$ is equivalent to that of $K_c \# K^*_c$ by the result.

References

Department of Mathematics
Faculty of Education
Gifu University
Yanagido 1-1, Gifu, 501-1193, Japan
E-mail address: tanakat@gifu-u.ac.jp