DOI QR코드

DOI QR Code

Discrimination of Cultivars and Cultivation Origins from the Sepals of Dry Persimmon Using FT-IR Spectroscopy Combined with Multivariate Analysis

FT-IR 스펙트럼 데이터의 다변량 통계분석을 이용한 곶감의 원산지 및 품종 식별

  • Hur, Suel Hye (Microbiological Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Suk Weon (Microbiological Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Min, Byung Whan (Division of Ecological and Environmental System, Kyungpook National University)
  • 허설혜 (한국생명공학연구원 미생물자원센터) ;
  • 김석원 (한국생명공학연구원 미생물자원센터) ;
  • 민병환 (경북대학교 생태환경대학 생태환경시스템학부)
  • Received : 2014.10.24
  • Accepted : 2015.01.12
  • Published : 2015.02.28

Abstract

This study aimed to establish a rapid system for discriminating the cultivation origins and cultivars of dry persimmons, using metabolite fingerprinting by Fourier transform infrared (FT-IR) spectroscopy combined with multivariate analysis. Whole-cell extracts from the sepals of four Korean cultivars and two different Chinese dry persimmons were subjected to FT-IR spectroscopy. Principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) of the FT-IR spectral data successfully discriminated six dry persimmons into two groups depending on their cultivation origins. Principal component loading values showed that the 1750-1420 and $1190-950cm^{-1}$ regions of the FT-IR spectra were significantly important for the discrimination of cultivation origins. The accuracy of prediction of the cultivation origins and cultivars by PLS regression was 100% (p<0.01) and 85.9% (p<0.05), respectively. These results clearly show that metabolic fingerprinting of FT-IR spectra can be applied for rapid discrimination of the cultivation origins and cultivars of commercial dry persimmons.

본 연구에서는 상업용 곶감의 꽃받침과 종자를 이용하여 대사체 수준에서의 원산지와 품종 식별 체계를 확립하였다. 실험에 이용된 곶감 시료는 국내산 곶감 함안수시(Hamansusi), 예천고종시(Yecheongojongsi), 산청단성시(Sancheongdanseongsi), 그리고 논산월하시(Nonsanwalhasi) 4개 품종과 국내에서 판매되고 있는 중국산 곶감 2개 종류의 꽃받침과 종자를 사용하였으며, 꽃받침과 종자 시료의 전세포 추출물로부터 FT-IR 스펙트럼 데이터를 기반으로 다변량 통계분석(PCA, PLS-DA)을 실시하였다. 이 결과 국내산 곶감 4품종과 중국산 곶감 2종류가 두 그룹으로 확연히 나뉘어지는 것을 확인할 수 있었다. 상업용 곶감의 꽃받침을 PLS regression을 실시한 결과 국내산과 중국산 곶감을 100% 예측할 수 있었다. 또한 곶감 종자를 이용하여 품종 식별한 결과 각 4개의 그룹으로 나뉘어지는 것을 확인할 수 있었으며, PLS regression을 실시한 결과 약 86%의 정확도로 품종 식별이 가능함을 알 수 있었다. FT-IR 스펙트럼 분석의 간편성과 신속성을 고려할 때, 본 연구 결과는 상업용 곶감에 대한 원산지나 품종 식별의 신속한 수단으로 활용할 수 있을 것으로 예상된다. 더 나아가 본 기술을 이용하여 다른 농산물의 원산지 또는 품종 식별 수단으로 활용이 가능할 것으로 기대된다.

Keywords

References

  1. Sugiura A, Taira S, Ryogo K, Tomana T. Effect of ethanol treatment of flesh darkening and polyphenoloxidase activity in Japanese persimmon, Hiratanenashi. Nippon Shoukukin Kogyo Gakkaishi 32: 586-589 (1985) https://doi.org/10.3136/nskkk1962.32.8_586
  2. Kim TC, Ko KC. Classification of persimmon cultivars on the basis of horticultural traits. Korean J. Hortic. Sci. Technol. 36: 331-342 (1995)
  3. Moon KD, Sohn TH. The changes of soluble sugar components and Texture during the processing of Dried Persimmon. Korean J. Dietary Culture 3: 385-390 (1998)
  4. Park HW, Koh HY, Park MH. Effect of packaging materials and method on the storage quality of dried persimmon. Korean J. Food Sci. Technol. 21: 321-325 (1989)
  5. Lee MH, Lee SH, Park SD, Choi BS. The effect of package material and moisture content on storage of dried persimmon at room temperature. Korean J. Post Harvest Sci. Technol. 2: 285- 291 (1995)
  6. Cho DH. Classification of Korean domestic persimmon varieties (Diospyros kaki Thunb.) using morphological and genetical characteristics. PhD thesis, Andong National University, Andong, Korea (2005)
  7. Cho KH, Cho KS, Han JH, Kim HR, Shin IS, Kim SH, Chun JA, Hwang HS. Development of sequence characterized amplified region markers for cultivar iIdentification in persimmon. Korean J. Hortic. Sci. Technol. 31: 798-806 (2013) https://doi.org/10.7235/hort.2013.13057
  8. Hwang JH, Park YO, Kim SC, Lee YJ, Kang JS, Choi YW, Son BG, Park YH. Evaluation of genetic diversity among persimmon cultivars (Diospyros kaki Thunb.) using microsatellite markers. J. Life Sci. 20: 632-638 (2010) https://doi.org/10.5352/JLS.2010.20.4.632
  9. Park YO, Park DS, Son JY, Choi ST, Kim SC, Hong GP, Park YH. Evaluation of genetic diversity among persimmon (Diospyros Kaki Thunb.) collection lines and cultivars using simple sequence repeat markers. Korean J. Breed. Sci. 44: 127-135 (2012)
  10. Seo DH, Jung KM, Kim SJ, Kim KM. Development of EST-SSR markers and analysis of genetic diversity using persimmon (Diospyros kaki Thunb) cultivars collecting from domestic. Korean J. Plant Res. 26: 491-502 (2013) https://doi.org/10.7732/kjpr.2013.26.4.491
  11. Cho DH, Chun IJ, Kwon ST, Song YS, Chou YD. Genetic Relationships of Korean astringent persimmon varieties using AFLP analysis. Korean J. Hortic. Sci. Technol. 25: 114-118 (2007)
  12. Hur SS, Kang BH, Lee DS, Lee SH, Lee JM. Quality characteristics of domestic dried persimmon and imported dried persimmon. Korean J. Food Preserv. 21: 140-145 (2014) https://doi.org/10.11002/kjfp.2014.21.1.140
  13. Kos G, Lohninger H, Krska R. Validation of chemometric models for determination of deoxynivalenol on maize by mid-Infrared spectroscopy. Mycotoxin Res. 19: 149-153 (2003) https://doi.org/10.1007/BF02942955
  14. Monferrere GL, Azcarate SM, Cantarelli MA, Funes IG, Camina JM. Chemometric characterization of sunflower seeds. J. Food Sci. 77: 1018-1022 (2012) https://doi.org/10.1111/j.1750-3841.2012.02881.x
  15. Dunn WB, Bailey NJC, Johnson HE. Measuring the metabolome current analytical technologies. Analyst 130: 606-625 (2005) https://doi.org/10.1039/b418288j
  16. Luca MD, Teriouzi W, Kzaiber F, Ioele G, Oussama A, Ragno G. Classification of morocacan olive cultivars by linear discriminant analysis appleid to ATR-FTIR spectra of endocarps. J. Food Sci. Technol. 47: 1286-1292 (2012) https://doi.org/10.1111/j.1365-2621.2012.02972.x
  17. Lu X, Ross CF, Powers JR, Rosco BA. Determination of quercetins in onion (Allium cepa) using infrared spectroscopy. J. Agr. Food Chem. 59: 5376-5382 (2011) https://doi.org/10.1021/jf104881f
  18. Kanakis CD, Petrakis EA, Kimbars AC, Pappas C, Tarantilis PA, Polissiou MG. Classification of greek mentha pulegium L. (Pennyroyal) samples, according to geographical location by fourier transform infrared spectroscopy. Phytochem. Analysis 23: 34-43 (2011)
  19. Leopold LF, Leopold N, Diehl HA, Socaciu C. Quantification of carbohydrates in fruit juices using FTIR spectroscopy and mulrivariate analysis. Spectroscopy 26: 93-104 (2011) https://doi.org/10.1155/2011/285890
  20. Kwon YK, Ahn MS, Park JS, Liu JR, In DS, Min BW, Kim SW. Discrimination of cultivation ages and cultivars ginseng leaves using Fourier transform infrared spectroscopy combined with multivariate analysis. J. Ginseng Res. 38: 52-58 (2014) https://doi.org/10.1016/j.jgr.2013.11.006
  21. Sinelli N, Casiraghi E, Tura D, Downey G. Characterisation and classification of italian virgin olive oils by near- and mid-infrared spectroscopy. J. Near Infrared Spec. 16: 335-342 (2008) https://doi.org/10.1255/jnirs.795
  22. Marinovic S, Kristovic M, Spphar B, Rukavina V, Jukic A. Prediction of diesel fule properties by vibrational spectroscopy using multivariate analysis. J. Anal. Chem. 67: 939-949 (2012) https://doi.org/10.1134/S1061934812120039
  23. Sills DL, Gossett JM. Using FTIR spectroscopy to model alkaline pretreatment and enzymatic saccharification of six lignocelluosic biomasses. Biotechnol. Bioeng. 109: 894-903 (2012) https://doi.org/10.1002/bit.24376
  24. Pillonel L, Dufour E, Schaller E. Prediction of colour of European emmental chesses by using near infrared spectroscopy: a feasibility study. Eur. Food Res. Technol. 226: 63-69 (2007) https://doi.org/10.1007/s00217-006-0509-4
  25. Yuan J, Wang C, Chen H, Zhou H, Ye J. Prediction of fatty acid composition in Camellia oleifera oil by near infrared transmittance spectroscopy. Food Chem. 138: 1657-1662 (2013) https://doi.org/10.1016/j.foodchem.2012.11.096
  26. Yonemori K, Honsho C, Kitajima A, Aradhya M, Giordani E, Bellini E, Parfiit DE. Relationship of European persimmon (Dispyros kaki Thunb.) cultivars to Asian cultivars, characterized using AFLPs. Genet. Resour. Crop Ev. 55: 81-89 (2008) https://doi.org/10.1007/s10722-007-9216-7
  27. Peng Z, Dan W, Jiang-Kuo L, Xiao-Xiang L, Shao-Hui C. Identification of different varieties and storage time persimmon by near infrared diffuse reflectance spectroscopy. J. Food Saf. Qual. 5: 1191-1196 (2014)
  28. Parker FS. Application of infrared, raman, and resonance raman spectroscopy in biochemistry. Plenum Press, New York, NY, USA. p. 527 (1983)
  29. Dumas P, Miller L. The use of synchrotron infrared microspcetroscopy in biological and biomedical investigation. Vib. Spectrosc. 32: 3-21 (2003) https://doi.org/10.1016/S0924-2031(03)00043-2
  30. Wolkers WF, Oliver AE, Tablin F, Crowe JH. A fourer transform infrared spectroscopy study of sugar glasses. Carbohyd. Res. 339: 1077-1085 (2004) https://doi.org/10.1016/j.carres.2004.01.016
  31. Yee N, Benning LG, Phoenix VR, Ferris FG. Characterization of metal-cyanobacteria sorption reaction: a combined macroscopic and infrared spectroscopic investigation. Environ. Sci. Technol. 38: 775-782 (2004) https://doi.org/10.1021/es0346680
  32. D'Souza L, Devi P, Shridhar D, Naik CG. Use of fourier transform infrared (FTIR) spectroscopy to study cadmium-induced changes in Padina Tetrastromatica (Hauck). Anal. Chem. Insight. 3: 135-143 (2008)
  33. Lopez-Sanchez M, Ayora-Canada MJ, Molina-Diaz A. Olive fruit growth and ripening as seen by vibrational spectroscopy. J. Agr. Food Chem. 58: 82-87 (2010) https://doi.org/10.1021/jf902509f
  34. Kim SW, Min SR, Kim JH, Park SK, Kim TI, Liu JR. Rapid discrimination of commercial strawberry cultivars using Fourier transform infrared spectroscopy data combined by multivariate analysis. Plant Biotechnol. Rep. 3: 87-93 (2009) https://doi.org/10.1007/s11816-008-0078-z
  35. Moon KD, Kim JK, Kim JH. The compositions of fatty acid and amino acid and storage property in dried persimmons. Korean J. Food Preserv. 4: 1-10 (1997)