DOI QR코드

DOI QR Code

Chemical Characteristics and Immuno-Stimulatory Activity of Polysaccharides from Fermented Vinegars Manufactured with Different Raw Materials

상이한 재료로 제조된 발효식초 유래 다당의 화학적 특성과 면역증진 활성

  • Received : 2014.08.27
  • Accepted : 2015.01.13
  • Published : 2015.02.28

Abstract

To elucidate the immuno-stimulatory activity of traditional fermented vinegar, six kinds of crude polysaccharides were isolated from traditional fermented vinegars manufactured with different raw materials in domestic or foreign countries, after which their chemical properties and immuno-stimulatory activities were evaluated. Of the six samples, three kinds of crude polysaccharides prepared from Korean brown rice vinegar (KBV-0), Japanese brown rice vinegar (JBV-0), and Korean persimmon vinegar (KPV-0) showed higher yields and interleukin (IL)-6 production by macrophages and were thus selected for further study. Anti-complementary activities of KBV-0, KPV-0, and JBV-0 increased dose-dependently. KBV-0 and KPV-0 showed higher anti-complementary activities ($ITCH_{50}$ 62 and 65%) than JBV-0 at $1,000{\mu}g/mL$. KBV-0, KPV-0, and JBV-0 did not affect growth of peritoneal macrophages at a dose of 1.6 to $1,000{\mu}g/mL$, where as they significantly augmented production of IL-6, IL-12, and TNF-${\alpha}$ in a dose-dependent manner. However, immuno-stimulatory activity of KPV-0 was the most potent among the tested polysaccharides. These results suggest that Korean fermented vinegars contain selected polysaccharides that confer immuno-stimulatory activities beneficial to human health.

전통발효식초의 면역증진 활성을 규명하기 위하여 서로 다른 원재료로부터 제조된 국내외산 6종의 발효식초로부터 다당류를 분리하고 이들의 화학 특성과 면역증진 활성에 대해 평가하였다. 6종의 발효식초 유래 조다당 중에서 국내 현미 식초 유래 조다당(KBV-0)과 일본 현미식초 유래 조다당(JBV-0) 및 국내 감식초 유래 조다당(KPV-0)에서 발효식초 대비 높은 수율이 얻어졌으며, in vitro 상에서 대식세포를 활성화하여 우수한 interleukin(IL)-6의 생산 유도 활성을 보여 고 면역활성 다당으로 선별하고 이후의 실험에 사용하였다. 한편 선별된 발효식초 유래 3종의 다당 획분 KBV-0, KPV-0 및 JBV-0는 비특이적 면역계에 있어 중요 역할을 담당하고 있는 보체계에 대하여 모두 농도 의존적으로 높은 항보체 활성을 보였지만 KBV-0와 KPV-0의 경우 $1,000{\mu}g/mL$ 농도에서 각각 $ITCH_{50}$ 62% 및 65%의 활성을 보여 JBV-0에 비해 높은 항보체 활성을 나타냈다. 한편 KBV-0, JBV-0 및 KPV-0는 mouse 복강 macrophage에 대해 특별한 세포독성은 나타내지 않았으며, 대식세포를 자극하여 IL-6, IL-12 및 TNF-${\alpha}$의 생산을 농도 의존적으로 증가시켰다. 하지만 KPV-0의 활성이 각 처리 농도에서 상대적으로 가장 양호한 것으로 나타났다. 이러한 결과로부터 국내산 전통발효식초에는 타 영양성분 외에 특이 다당류를 함유하고 있으며 이들 발효식초 유래 다당이 인체 건강유지에 필수적인 면역기능을 증진시킬 수 있음을 추정하게 하였다.

Keywords

References

  1. Kwon SH, Jeong EJ, Lee GD, Jeong YJ. 2000. Preparation method of fruit vinegars by two stage fermentation and beverages including vinegar. Food Industry and Nutrition 5(1): 18-24.
  2. KFDA. 2012. Korea food and administration. Korean Food and Drug Administration, Seoul, Korea. p 5-21-1.
  3. Kang BH, Shin EJ, Lee SH, Lee DS, Hur SS, Shin KS, Kim SH, Son SM, Lee JM. 2011. Optimization of the aceticacid fermentation condition of apple. Korean J Food Preserv 18: 980-985. https://doi.org/10.11002/kjfp.2011.18.6.980
  4. Joo KH, Cho MH, Park KJ, Jeong SW, Lim JH. 2009. Effects of fermentation method and brown rice content on quality characteristics of brown rice vinegar. Korean J Food Preserv 16: 33-39.
  5. Ko YJ, Jeong DY, Lee JO, Park MH, Kim EJ, Kim JW, Kim YS, Ryu CH. 2007. The establishment of optimum fermentation conditions for Prunus mume vinegar and its quality evaluation. J Korean Soc Food Sci Nutr 36: 361-365. https://doi.org/10.3746/jkfn.2007.36.3.361
  6. Lee YC, Lee JH. 2000. A manufacturing process of high strength vinegar. Food Industry and Nutrition 5(1): 13-17.
  7. Choi HS, Kim MK, Park HS, Shin DH. 2005. Changes in physicochemical characteristics of Bokbunja (Rubus coreanus Miq.) wine during fermentation. Korean J Food Sci Technol 37: 574-578.
  8. Lee WJ, Kim SS. 1998. Preparation of Sikhe with brown rice. Korean J Food Sci Technol 30: 146-150.
  9. Seok H, Lee JY, Park EM, Park SE, Lee JH, Lim S, Lee BW, Kang ES, Lee HC, Cha BS. 2012. Balsamic vinegar improves high fat-induced beta cell dysfunction via beta cell ABCA1. Diabetes Metab J 36: 275-279. https://doi.org/10.4093/dmj.2012.36.4.275
  10. Sakanakaand S, Ishihara Y. 2008. Comparison of antioxidant properties of persimmon vinegar and some other commercial vinegars in radical-scavenging assays and on lipid oxidation in tuna homogenates. Food Chem 107: 739-744. https://doi.org/10.1016/j.foodchem.2007.08.080
  11. Na HS, Choi GC, Yang SI, Lee JH, Cho JY, Ma SJ, Kim JY. 2013. Comparison of characteristics in commercial fermented vinegars made with different ingredients. Korean J Food Preserv 20: 482-487. https://doi.org/10.11002/kjfp.2013.20.4.482
  12. Hwang YC, Shin KS. 2008. Characterization of immunostimulating polysaccharides isolated from Korean persimmon vinegar. Korean J Food Sci Technol 40: 220-227.
  13. Ruoslahti E. 1989. Proteoglycans in cell regulation. J Biol Chem 264: 13369-13372.
  14. Paulson JC. 1989. Glycoproteins: what are the sugar chains for? Trends Biochem Sci 14: 272-276. https://doi.org/10.1016/0968-0004(89)90062-5
  15. Shin KS, Darvill AG. 2006. Structural characterization of physiologically active polysaccharides from natural products (Arabidopsis). Food Sci Biotechnol 15: 447-452.
  16. Zhu H, Zhang Y, Zhang J, Chen D. 2008. Isolation and characterization of an anti-complementary protein-bound polysaccharide from the stem barks of Eucommia ulmoides. Int Immunopharmacol 8: 1222-1230. https://doi.org/10.1016/j.intimp.2008.04.012
  17. Bao X, Wang Z, Fang J, Li X. 2002. Structural features of an immunostimulating and antioxidant acidic polysaccharide from the seeds of Cuscuta chinensis. Planta Med 68: 237-243. https://doi.org/10.1055/s-2002-23133
  18. Shin KS, Kiyohara H, Matsumoto T, Yamada H. 1997. Rhamnogalacturonan II from the leaves of Panax ginseng C. A. Meyer as a macrophage Fc receptor expression-enhancing polysaccharide. Carbohydr Res 300: 239-249. https://doi.org/10.1016/S0008-6215(97)00055-4
  19. Lee EH, Park HR, Shin MS, Cho SY, Choi HJ, Shin KS. 2014. Antitumor metastasis activity of pectic polysaccharide purified from the peels of Korean Citrus Hallabong. Carbohydr Polym 111: 72-79. https://doi.org/10.1016/j.carbpol.2014.04.073
  20. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356. https://doi.org/10.1021/ac60111a017
  21. Blumenkrantz N, Asboe-Hansen G. 1973. New method for quantitative determination of uronic acid. Anal Biochem 54: 484-489. https://doi.org/10.1016/0003-2697(73)90377-1
  22. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  23. Karkhanis YD, Zeltner JY, Jackson JJ, Carlo DJ. 1978. A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of gram-negative bacteria. Anal Biochem 85: 595-601. https://doi.org/10.1016/0003-2697(78)90260-9
  24. Jones TM, Albersheim P. 1972. A gas chromatographic method for the determination of aldose and uronic acid constituents of plant cell wall polysaccharides. Plant Physiol 49: 926-936. https://doi.org/10.1104/pp.49.6.926
  25. Mayer MM. 1971. Complement and complement fixation. In Experimental Immunochemistry. 2nd ed. Kabat EA, Mayer MM, eds. Thomas Publisher, Springfield, IL, USA. p 133-240.
  26. Conrad RE. 1981. Induction and collection of peritoneal exudate macrophages. In Manual of Macrophage Methodology. Herscowitz HB, Holden HT, Bellanti JA, Ghaffar A, eds. Marcel Dekker, Inc., New York, NY, USA. Vol 13, p 5-11.
  27. Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K. 1996. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 19: 1518-1520. https://doi.org/10.1248/bpb.19.1518
  28. Hackett CJ. 2003. Innate immune activation as a broad-spectrum biodefense strategy: prospects and research challenges. J Allergy Clin Immunol 112: 686-694. https://doi.org/10.1016/S0091-6749(03)02025-6
  29. Cao H, Urban JF Jr, Anderson RA. 2008. Cinnamon polyphenol extract affects immune responses by regulating antiand proinflammatory and glucose transporter gene expression in mouse macrophages. J Nutr 138: 833-840.
  30. Nathan CF, Murray HW, Cohn ZA. 1980. The macrophage as an effector cell. N Engl J Med 303: 662-665. https://doi.org/10.1056/NEJM198009183031202
  31. Unanue ER. 1984. Antigen-presenting function of the macrophage. Ann Rev Immunol 2: 395-428. https://doi.org/10.1146/annurev.iy.02.040184.002143
  32. Cho JW, Rhee YK, Lee YC, Kim YC, Shin KS, Nam SH, Hong HD. 2014. Immunomodulatory activity of crude polysaccharides from makgeolli. J Korean Soc Food Sci Nutr 43: 238-242. https://doi.org/10.3746/jkfn.2014.43.2.238
  33. Ha JW, Yoo HS, Shin JW, Cho JH, Lee NH, Yoon DH, Lee YW, Son CG, Cho CK. 2006. Effects of Cordyceps militaris extract on tumor immunity. Kor J Ori Med 27: 12-29.
  34. Saito H, Tomioka H, Sato K. 1988. PSK, a polysaccharide from Coriolus versicolor, enhances oxygen-metabolism of murine peritoneal macrophages and the host-resistance to listerial infection. J Gen Microbiol 134: 1029-1035.
  35. Yamagishi T, Tsuboi T, Kikuchi K. 2003. Potent natural immunomodulator, rice water-soluble polysaccharide fractions with anticomplementary activity. Cereal Chem 80: 5-8. https://doi.org/10.1094/CCHEM.2003.80.1.5
  36. Seelen MA, Roos A, Wieslander J, Mollnes TE, Sjoholm AG, Wurzner R, Loos M, Tedesco F, Sim RB, Garred P, Alexopoulos E, Turner MW, Daha MR. 2006. Determinants of human complement function in health and disease. Mol Immunol 43: 150-151. https://doi.org/10.1016/j.molimm.2005.06.003
  37. Keller R, Keist R, Wechsler A, Leist TP, van der Meide PH. 1990. Mechanisms of macrophage-mediated tumor cell killing: a comparative analysis of the roles of reactive nitrogen intermediates and tumor necrosis factor. Int J Cancer 46: 682-686. https://doi.org/10.1002/ijc.2910460422
  38. Jiang HL, Kang ML, Quan JS, Kang SG, Akaike T, Yoo HS, Cho CS. 2008. The potential of mannosylated chitosan microspheres to target macrophage mannose receptors in an adjuvant-delivery system for intranasal immunization. Bio materials 29: 1931-1939.
  39. Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ, Gonda TJ, Alexander WS, Metcalf D, Nicola NA, Hilton DJ. 1997. A family of cytokine-inducible inhibitors of signalling. Nature 387: 917-921. https://doi.org/10.1038/43206
  40. Wang H, Actor JK, Indrigo J, Olsen M, Dasgupta A. 2003. Asian and Siberian ginseng as a potential modulator of immune function: an in vitro cytokine study using mouse macrophages. Clin Chim Acta 327: 123-128. https://doi.org/10.1016/S0009-8981(02)00343-1
  41. Meyers RA. 2007. Immunology: from cell biology to disease. 1st ed. Wiley-VCH Verlag, Weinheim, Germany. p 102-107.
  42. Cheng A, Wan F, Wang J, Jin Z, Xu X. 2008. Macrophage immunomodulatory activity of polysaccharides isolated from Glycyrrhiza uralensis fish. Int Immunopharmacol 8: 43-50. https://doi.org/10.1016/j.intimp.2007.10.006
  43. Tanigawa K, Craig RA, Stoolman LM, Chang AE. 2000. Effects of tumor necrosis factor-$\alpha$ on the in vitro maturation of tumor-reactive effector T cells. J Immunother 23: 528-535. https://doi.org/10.1097/00002371-200009000-00003
  44. Shida K, Suzuki T, Kiyoshima-Shibata J, Shimada S, Nanno M. 2006. Essential roles of monocytes in stimulating human peripheral blood mononuclear cells with Lactobacillus casei to produce cytokines and augment natural killer cell activity. Clin Vaccine Immunol 13: 997-1003. https://doi.org/10.1128/CVI.00076-06
  45. Munder M, Mallo M, Eichmann K, Modolell M. 1998. Murine macrophages secrete interferon $\gamma$ upon combined stimulation with interleukin (IL)-12 and IL-18: A novel pathway of autocrine macrophage activation. J Exp Med 187: 2103-2108. https://doi.org/10.1084/jem.187.12.2103

Cited by

  1. Radical-Scavenging Activities of Fermented Cactus Cladodes (Opuntia humifusa Raf.) vol.29, pp.2, 2016, https://doi.org/10.9799/ksfan.2016.29.2.200
  2. In vitro and in vivo effects of polysaccharides isolated from Korean persimmon vinegar on intestinal immunity vol.58, pp.6, 2015, https://doi.org/10.1007/s13765-015-0117-8
  3. Structural and immunological feature of rhamnogalacturonan I-rich polysaccharide from Korean persimmon vinegar vol.89, 2016, https://doi.org/10.1016/j.ijbiomac.2016.04.060
  4. 전통 식초의 종류와 제조방법에 관한 문헌 연구 vol.49, pp.4, 2015, https://doi.org/10.23093/fsi.2016.49.4.94
  5. From Diospyros kaki L. (Persimmon) Phytochemical Profile and Health Impact to New Product Perspectives and Waste Valorization vol.13, pp.9, 2015, https://doi.org/10.3390/nu13093283