DOI QR코드

DOI QR Code

Radical Scavenging and Anti-Obesity Effects of 50% Ethanol Extract from Fermented Curcuma longa L.

발효울금 50% 에탄올 추출물의 라디칼 소거능 및 지방형성 억제 효과

  • Kim, Jihye (Division of Food and Nutrition, Chonnam National University) ;
  • Jun, Woojin (Division of Food and Nutrition, Chonnam National University)
  • 김지혜 (전남대학교 식품영양과학부) ;
  • 전우진 (전남대학교 식품영양과학부)
  • Received : 2014.12.16
  • Accepted : 2015.01.07
  • Published : 2015.02.28

Abstract

In this study, free radical scavenging activities (ABTS, DPPH, NBT, TBARS, and ORAC) and anti-obesity potential were evaluated using 50% ethanol extract from fermented Curcuma longa L. (FCE50). FCE50 showed free radical scavenging activities and anti-oxidant potential. Lipid accumulation and intracellular TG content were significantly reduced by 25.8% and 28.6%, respectively, by $250{\mu}g/mL$ of FCE50 compared to adipocytes. Glucose uptake was significantly reduced by 12.0%. FCE50 significantly reduced mRNA expression of acetyl-CoA carboxylase in 3T3-L1 cells. These results indicate that the anti-adipogenic effect of FCE50 might be due to its radical scavenging activity and anti-oxidant potential.

본 연구에서는 FCE50을 대상으로 다양한 항산화 실험을 실시한 결과, FCE50이 항산화능을 보유하고 있음을 확인하였다. 또한 FCE50은 3T3-L1 전지방세포의 분화과정 중 세포내 지방축적을 유의적으로 감소시키며 포도당 유입을 감소시켰다. 지방합성과 관련된 ACC 효소의 mRNA 발현량을 측정한 결과, 완전히 분화된 지방세포와 비교하여 FCE50의 처리 시 그 발현량이 현저히 감소됨을 확인하였다. 이상의 결과로부터 FCE50은 항산화 활성을 보유하고 있으며, 이는 FCE50이 지방세포로의 분화과정 중 지방형성을 유의적으로 감소시키는 결과에 영향을 미치는 것으로 사료된다.

Keywords

References

  1. Xing Y, Yan F, Liu Y, Zhao Y. 2010. Matrine inhibits 3T3- L1 preadipocyte differentiation associated with suppression of ERK1/2 phosphorylation. Biochem Biophys Res Commun 396: 691-695. https://doi.org/10.1016/j.bbrc.2010.04.163
  2. Roberts AW, Clark AL, Witte KK. 2009. Review article: Left ventricular dysfunction and heart failure in metabolic syndrome and diabetes without overt coronary artery disease -do we need to screen out patients? Diab Vasc Dis Res 6: 153-163. https://doi.org/10.1177/1479164109338774
  3. Moche S, Mkaddem SB, Wang W, Katic M, Tseng YH, Carnesecchi S, Steger K, Foti M, Meier CA, Muzzin P, Kahn CR, Ogier-Denis E, Szanto I. 2007. Reduced expression of the NADPH oxidase NOX4 is a hallmark of adipocyte differentiation. Biochem Biophys Acta 1773: 1015-1027. https://doi.org/10.1016/j.bbamcr.2007.03.003
  4. Flukawa S, Fujita T, Shimabukuro M. 2004. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114: 1752-1761. https://doi.org/10.1172/JCI21625
  5. Choi JH, Park YH, Lee IS, Lee SP, Yu MH. 2013. Antioxidant activity and inhibitory effect of Aster scaber Thunb. extract on adipocyte differentiation in 3T3-L1 cells. Korean J Food Sci Technol 45: 356-363. https://doi.org/10.9721/KJFST.2013.45.3.356
  6. Park MJ. 2005. Recent advances in regulating energy homeostasis and obesity. Korean J Pediatr 48: 126-137.
  7. Park HJ, Kim MM, Oh Y. 2012. Effect of fruit extract of Prunus mume on the scavenging activity of reactive oxygen species and melanin production in B16F1 cells. J Life Sci 22: 936-942. https://doi.org/10.5352/JLS.2012.22.7.936
  8. Lee KJ, Ma JY, Kim YS. 2012. Identification of curcuminoids from turmeric (Curcuma longa) using ultrasonic wave and dipping method. Korean Soc Biotechnol Bioeng J 27: 33-39.
  9. Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, Baik HW, Ha J, Park OJ. 2005. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem Biophys Res Commun 338: 694-699. https://doi.org/10.1016/j.bbrc.2005.09.195
  10. Gosmann G, Barlette AG, Dhamer T, Arcari DP, Santos JC, de Camargo ER, Acedo S, Gambero A, Gnoatto SC, Ribeiro ML. 2012. Phenolic compounds from maté (Ilex paraguariensis) inhibit adipogenesis in 3T3-L1 preadipocytes. Plant Foods Hum Nutr 67: 156-161. https://doi.org/10.1007/s11130-012-0289-x
  11. Park JJ, Lee JM, Jun WJ. 2013. Radical scavenging and anti-obesity effects of various extracts from turmeric (Curcuma longa L.). J Korean Soc Food Sci Nutr 42: 1908-1914. https://doi.org/10.3746/jkfn.2013.42.12.1908
  12. You Y, Jun WJ. 2012. Effects of Fractions from Benincasa hispida on inhibition of adipogenesis in 3T3-L1 preadipocytes. J Korean Soc Food Sci Nutr 41: 895-900. https://doi.org/10.3746/jkfn.2012.41.7.895
  13. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  14. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  15. Nishikimi M. 1975. Oxidation of ascorbic acid with superoxide anion generated by the xanthine oxidase system. Biochem Biophys Res Commun 63: 463-468. https://doi.org/10.1016/0006-291X(75)90710-X
  16. Draper HH, Hadley M. 1990. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186: 421-431. https://doi.org/10.1016/0076-6879(90)86135-I
  17. Cao G, Prior RL. 1999. Measurement of oxygen radical absorbance capacity in biological samples. Methods Enzymol 299: 50-62. https://doi.org/10.1016/S0076-6879(99)99008-0
  18. Gao CL, Zhu JG, Zhao YP, Chen XH, Ji CB, Zhang CM, Zhu C, Xia ZK, Peng YZ, Guo XR. 2010. Mitochondrial dysfunction is induced by the overexpression of UCP4 in 3T3-L1 adipocytes. Int J Mol Med 25: 71-80.
  19. Lee MY, Yoo MS, Whang YJ, Jin YJ, Hong MH, Pyo YH. 2012. Vitamin C, total polyphenol, flavonoid contents and antioxidant capacity of several fruit peels. Korean J Food Sci Technol 44: 540-544. https://doi.org/10.9721/KJFST.2012.44.5.540
  20. Lee YJ, Han OT, Choi HS, Lee BY, Chung HJ, Lee OH. 2013. Antioxidant and anti-adipogenic effects of PineXol$^{(R)}$. Korean J Food Sci Technol 45: 97-103. https://doi.org/10.9721/KJFST.2013.45.1.97
  21. Hwang CR, Shin JH, Kang MJ, Lee SJ, Sung NJ. 2012. Antioxidant and antiobesity activity of solvent fractions from red garlic. J Life Sci 22: 950-957. https://doi.org/10.5352/JLS.2012.22.7.950
  22. McNeel RL, Mersmann HJ. 2003. Effects of isomers of conjugated linoleic acid on porcine adipocyte growth and differentiation. J Nutr Biochem 14: 266-274. https://doi.org/10.1016/S0955-2863(03)00031-7
  23. Cha SY, Jang JY, Lee YH, Lee G, Lee HJ, Hwang KT, Kim Y, Jun W, Lee J. 2010. Lipolytic effect of methanol extracts from Luffa cylindrica in mature 3T3-L1 adipocytes. J Korean Soc Food Sci Nutr 39: 813-819. https://doi.org/10.3746/jkfn.2010.39.6.813
  24. Hsieh CF, Tsuei YW, Liu CW, Kao CC, Shih LJ, Ho LT, Wu CP, Tsai PH, Chang HH, Ku HC, Kao YH. 2010. Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways. Planta Med 76: 1694-1698. https://doi.org/10.1055/s-0030-1249877
  25. Ejaz A, Wu D, Kwan P, Meydani M. 2009. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J Nutr 139: 919-925. https://doi.org/10.3945/jn.108.100966
  26. Ahn J, Lee H, Kim S, Park J, Ha T. 2008. The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res Commun 373: 545-549. https://doi.org/10.1016/j.bbrc.2008.06.077
  27. Kang SW, Kang SI, Shin HS, Yoon SA, Kim JH, Ko HC, Kim SJ. 2013. Sasa quelpaertensis Nakai extract and its constituent p-coumaric acid inhibit adipogenesis in 3T3-L1 cells through activation of the AMPK pathway. Food Chem Toxicol 59: 380-385. https://doi.org/10.1016/j.fct.2013.06.033
  28. Kong CS, Kim JA, Kim SK. 2009. Anti-obesity effect of sulfated glucosamine by AMPK signal pathway in 3T3-L1 adipocytes. Food Chem Toxicol 47: 2401-2406. https://doi.org/10.1016/j.fct.2009.06.010