DOI QR코드

DOI QR Code

Research Review of Sodium and Sodium Ion Battery

나트륨을 활용한 이차전지 연구동향

  • 유철휘 (호서대학교 일반대학원 그린에너지공학과) ;
  • 강성구 (호서대학교 화학공학과) ;
  • 김진배 (호서대학교 화학공학과) ;
  • 황갑진 (호서대학교 일반대학원 그린에너지공학과)
  • Received : 2015.01.26
  • Accepted : 2015.02.28
  • Published : 2015.02.28

Abstract

The secondary battery using sodium is investigating as one of power storage system and power in electric vehicles. The secondary battery using sodium as a sodium battery and sodium ion battery had merits such as a abundant resources, high energy density and safety. Sodium battery (sodium molten salt battery) is operated at lower temperature ($100^{\circ}C$) compared to NAS and ZEBRA battery ($300{\sim}350^{\circ}C$). Sodium ion battery is investigating as one of the post lithium ion battery. In this paper, it is explained for the principle and recent research trends in sodium molten salt and sodium ion battery.

Keywords

References

  1. B.L. Ellis, L.F. Nazar, "Sodium and sodium-ion energy storage batteries", Current Opinion in Solid State and Materials Science, Vol. 16, 2012, p. 168. https://doi.org/10.1016/j.cossms.2012.04.002
  2. H-S. Choi, J-C. Kim, C-H. Ryu, G-J. Hwang, "Research review of the all vanadium redox-flow battery for large scale power storage", Membrane Journal, Vol. 21, No. 2, 2011, p. 107.
  3. G-J. Hwang, A-S. Kang, H. Ohya, "Review of the redox-flow secondary battery", Chemical Industry and Technology, Vol. 16, No. 5, 1998, p.455.
  4. NGK homepage, http://www.ngk.co.jp
  5. T. Horie, Y. Ishida, H. Fujioka, "New trends in power storage systems", NTT Building Technology Institute Report, 2004.
  6. R.C. Galloway, C.-H. Dustmann, "ZEBRA batterymetal cost availability and recycling", EVS-20, Nov.15-19, California, USA, 2003.
  7. M. Mack, R. Pitchai, "Batteries 2010", The Big Batteries Industry Guide-Battery overview, Batteries International, January 2010.
  8. J.L. Sudworth, "The sodium/nickel chloride (ZEBRA) battery", J. Power Sources, Vol. 100, 2001, p. 149. https://doi.org/10.1016/S0378-7753(01)00891-6
  9. K. Nitta, S. Inazawa, S. Sakai, A. Fukunaga, E. Itani, K. Numata, R. Hagiwara, T. Nohira, "Development of molten salt electrolyte battery", SEI Technical Review, No. 76, April 2013, p.33.
  10. A. Fukunaga, T. Nohira, Y. Kozawa, R. Hagiwara, S. Sakai, K. Nitta, S. Inazawa, "Intermediate-temperature ionic liquid NaFSAKFSA and its application to sodium secondary batteries", J. Power Sources, Vol. 209, 2012, p.52. https://doi.org/10.1016/j.jpowsour.2012.02.058
  11. C.-Y. Chen, K. Matsumoto, T. Nohira, R. Hagiwara, A. Fukunaga, S. Sakai, K. Nitta, S. Inazawa, "Electrochemical and structural investigation of $NaCrO_2$ as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA-KFSA", J. Power Sources, Vol. 237, 2013, p. 52. https://doi.org/10.1016/j.jpowsour.2013.03.006
  12. A. Fukunaga, T. Nohira, R. Hagiwara, K. Numata, E. Itani, S. Sakai, K. Nitta, S. Inazawa, "A safe and high-rate negative electrode for sodium-ion batteries: Hard carbon in NaFSA-$C_1C_3pyrFSA$ ionic liquid at 363K", J. Power Sources, Vol. 246, 2014, p. 387. https://doi.org/10.1016/j.jpowsour.2013.07.112
  13. C.-Y. Chen, K. Matsumoto, T. Nohira, R. Hagiwara, Y. Orikasa, Y. Uchimoto, "Pyrophosphate $Na_2FeP_2O_7$ as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid", J. Power Sources, Vol. 246, 2014, p. 783. https://doi.org/10.1016/j.jpowsour.2013.08.027
  14. S. Kuze, J. Kageura, S. Mastumoto, T. Nakayama, M. Makidera, M. Saka, T. Yamaguchi, T. Yamamoto, K. Nakane, "Development of a sodium ion secondary battery", Sumitomo Kagaku, Vol. 2013, 2013, p. 1.
  15. N. Yabuuchi, S. Komaba, "A study on Iron-based layered Na-insertion materials", PF NEWS, Vol. 30, No. 3, Nov., 2012, p. 11.
  16. NEDO report No. 1079, "Making sodium-ion batteries that are worth their salt", 2011. 11. 16.
  17. F. Sauvage, L. Laffont, J.-M. Tarascon, E. Baudrin, "Study of the insertion/deinsertion mechanism of sodium into $Na_{0.44}MnO_2$", Inorg. Chem., Vol. 46, 2007, p. 3289. https://doi.org/10.1021/ic0700250
  18. Y. Cao, L. Xiao, W. Wang, D. Choi, Z. Nie, J. Yu, L.-V. Saraf, Z. Yang, J. Liu, "Reversible sodium ion insertion in single crystalline manganese oxide nanowire with long cycle life", Adv. Mater., Vol. 23, 2011, p. 3155. https://doi.org/10.1002/adma.201100904
  19. T. Omori, "Natoriumu ion denchino denkyoku tokuseito zenkotaidenchino sisaku", Central Research Institute of Electric Power Industry (Japan) report, No. Q12011, May, 2013.
  20. Z. Liu, X. Wang, Y. Wang, A. Tang, S. Yang, L. He, "Preparation of $NaV_{1−x}Al_xPO_4F$ cathode materials for application of sodium-ion battery", Trans. Nonferrous Met. Soc. China, Vol. 18, 2008, p. 346. https://doi.org/10.1016/S1003-6326(08)60060-6
  21. J. Barker, RKB. Gover, P. Burns, AJ. Bryan, "Hybrid-ion a lithium-ion cell based on a sodium insertion materials", Electrochem. Solid-State Lett., Vol. 9, 2006, A190. https://doi.org/10.1149/1.2168288
  22. N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, "$P_2$-type $Na_x[Fe_{1/2}Mn_{1/2}]O_2$ made from earth abundant elements for rechargeable Na batteries", Nature Materials, Vol. 11, 2012, p. 512. https://doi.org/10.1038/nmat3309
  23. X. Xia, J.R. Dahn, "$NaCrO_2$ is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes", Electrochem. Solid-State Lett., Vol. 15, No. 1, 2012, A1. https://doi.org/10.1149/2.002201esl
  24. S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata, S. Kuze, "Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell", Electrochem. Commun., Vol. 21, 2012, 65. https://doi.org/10.1016/j.elecom.2012.05.017
  25. A. Darwiche, C. Marino, M.T. Sougrati, B. Fraisse, L. Stievano, L. Monconduit, "Better cycling performances of bulk Sb in Na-ion batteries compared to Li ion systems: An unexpected electrochemical mechanism", J. Amer. Chem. Soc., Vol. 134, 2012, 20805. https://doi.org/10.1021/ja310347x
  26. L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Nie, J. Liu, "High capacity, reversible alloying reactions in SnSb/C nano-composites for Na-ion battery applications", Chem. Commun., Vol. 48, 2012, 3321. https://doi.org/10.1039/c2cc17129e
  27. S.-I. Park, I. Gocheva, S. Okada, J. Yamaki, "Electrochemical properties of $NaTi_2(PO_4)_3$ anode for rechargeable aqueous sodium-ion batteries", J. Electrochem. Soc., Vol. 158, 2011, A1067. https://doi.org/10.1149/1.3611434
  28. P. Senguttuvan, M. Palacin, "$Na_2Ti_3O_7$: lowest voltage ever reported oxide insertion electrode for sodium ion batteries", Chem. Mater., Vol. 23, 2011, 4109. https://doi.org/10.1021/cm202076g
  29. C. Didier, M. Guignard, C. Denage, O. Szajwaj, S. Ito, I. Saasoune, J. Darriet, C. Delmas, "Electrochemical Na deintercalation from $NaVO_2$", Electrochem. Solid-State Lett., Vol. 14, 2011, A75. https://doi.org/10.1149/1.3555102
  30. O. Szajwaj, E. Gaudin, F. Weill, J. Darriet, C. Delmas, "Investigation of the new P'3-$Na_{0.6}VO_2$ phase: structural and physical properties", Inorg. Chem., Vol. 48, 2009, 9147. https://doi.org/10.1021/ic9008653
  31. V. Chevrier, G. Ceder, "Challenges for Na-ion negative electrodes", J. Electrochem. Soc., Vol. 158, 2011, A1011. https://doi.org/10.1149/1.3607983

Cited by

  1. Development of Room Temperature Na/S Secondary Batteries vol.27, pp.6, 2016, https://doi.org/10.7316/KHNES.2016.27.6.753