DOI QR코드

DOI QR Code

Physicochemical properties and protease activities of microencapsulated pineapple juice powders by spray drying process

분무건조공정을 이용한 파인애플 착즙액 미세캡슐 분말의 물리화학적 특성 및 protease 활성

  • Park, Hye-Mi (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Chae, Ho-Yong (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Hong, Joo-Heon (Department of Food Science and Technology, Catholic University of Daegu)
  • 박혜미 (대구가톨릭대학교 식품공학전공) ;
  • 채호용 (대구가톨릭대학교 식품공학전공) ;
  • 홍주헌 (대구가톨릭대학교 식품공학전공)
  • Received : 2015.01.15
  • Accepted : 2015.01.29
  • Published : 2015.02.28

Abstract

The physicochemical properties and protease activities of spray-dried pineapple juice powders were investigated. The pH, soluble solids, and protease activity of the pineapple juice were pH 5.43, $12.8^{\circ}Brix$, and 4.82 unit/mL, respectively. The optimum pH and temperature of the protease activity from pineapple juice were pH 7.0 and $50^{\circ}C$, respectively. The microencapsulation of pineapple juice was achieved using maltodextrin and alginic acid through spray-drying. The L value and moisture content of the spray-dried powder were higher than those of the freeze-dried powder. The particle size of the freeze-dried powder ($501.57{\mu}m$) was higher than that of the spray-dried powder ($42.58-53.32{\mu}m$). The water absorption and water solubility of the powders were 0.41-0.87, and 90.45-99.76%, respectively. When compared, the protease activities were found to be in the following order : FD (1,297.47 unit/g) > SD-MA-1 (692.08 unit/g) > SD-MA-2 (664.66 unit/g) > SD-MA-3 (642.65 unit/g) > SD-M (633.51 unit/g). In the in vitro dissolution study measurements were conducted for 4 hr in pH 1.2 simulated gastric fluid and pH 6.8 simulated intestinal fluid, using a dissolution tester at $37^{\circ}C$ in 50 rpm. The protease survival of the 3.74-15.69% microencapsulated pineapple juice powders improved with an increase in the treatment concentration of alginic acid.

본 연구에서는 protease를 함유하고 있는 파인애플의 산업적 이용 증대 및 기능성식품 소재 개발을 목적으로 분무건조공정을 이용하여 파인애플 착즙액을 미세캡슐화 하였으며 미세캡슐 분말의 물리화학적 특성 및 protease 활성을 조사하였다. 파인애플 착즙액의 pH, 당도 및 protease 활성은 각각 pH 5.43, 12.80 및 4.82 unit/mL이었다. Protease 활성에 대한 최적 pH 및 온도는 각각 pH 7.0 및 $50^{\circ}C$에서 가장 높게 분석되었다. 파인애플 착즙액의 미세캡슐분말 제조는 말토덱스트린 및 알긴산을 피복물질로 사용하여 분무건조하였으며, 수분함량은 3.02~3.75%였다. 색도는 분무건조 미세캡슐 분말이 동결건조 분말에 비하여 L값 및 a값은 낮고 b값은 높은 경향을 나타내었는데 특히 말토덱스트린에 알긴산 3% 첨가시 선명한 노란색을 보여주었다. 입자크기는 동결건조 분말($501.57{\mu}m$)에 비하여 분무건조 미세캡슐 분말이 $42.58{\sim}53.32{\mu}m$로 유의적으로 작고 균일한 크기였으며, 입자모양은 전반적으로 구형의 형태를 보여주어 분말 흐름성이 양호할 것으로 판단되었다. 수분흡수지수는 말토덱스트린에 알긴산을 3% 첨가한 분무건조 미세캡슐 분말에서 0.41로 가장 낮은 지수를 나타내었으며 수분용해지수는 분무건조 미세캡슐 분말에서 98.22~99.76%로 나타나 동결건조 분말보다 우수하였다. 미세캡슐 분말의 protease 활성은 동결건조 분말(1,297.47 unit/g)이 분무건조 미세캡슐 분말(633.51~692.08 unit/g)보다 유의적으로 높은 활성을 나타내었으나, in vitro 인체 내 소화모델에 대한 protease 활성의 안정성은 분무건조 미세캡슐 분말에서만 g당 23.70~100.83 unit의 효소 활성이 나타나 위액과 장액의 pH 환경에서 안정성을 나타내는 것으로 확인되었다. 따라서 피복물질로 말토덱스트린 및 알긴산을 첨가하여 분무건조시 식품산업 활용 측면에서 가공적성이 향상된 미세캡슐 분말의 제조가 가능하고in vitro 인체 내 소화모델에 대한 protease 활성의 안정성이 우수하여 기능성 식품 소재 개발에 있어 산업적으로 적용 가능할 것으로 사료된다.

Keywords

References

  1. Bai YH, Roh JH (2000) The Properties of proteolytic enzymes in fruits (pear, kiwifruit, fig, pineapple, papaya). Korean J Soc Food Sci, 16, 363-366
  2. Ministry of food and drug safety (2013) Food & drug statistical yearbook. 15th ed, Korea, p 488
  3. Kim EM, Choe IS, Hwang SG (2003) Effects of singular manner or mixed type treatment of proteases isolated from pear, pineapple and kiwifruit on actomyosin degradation. Korea J Food Sci Anim Res, 23, 193-199
  4. Tappel AL, Miyada DS, Sterling C, Maier VP (1956) Meat tenderization. II. Factors affecting the tenderization of beef by papain. J Food Sci, 21, 375-383 https://doi.org/10.1111/j.1365-2621.1956.tb16934.x
  5. Kim MH, Rho JH, Kim MJ (2011) Stabilizing and optimizing properties of crude protease extracted from Korean figs. Korean J Food Cookery Sci, 27, 29-37 https://doi.org/10.9724/kfcs.2011.27.3.029
  6. Oh SJ, Kim SC, Koh SC (2002) Properties and thermostability of gelatin-degrading proteinases in the fruit of Actinidia chinensis (kiwifruit). Korean J Life Sci, 12, 752-758 https://doi.org/10.5352/JLS.2002.12.6.752
  7. Yang CY (2006) Physicochemical properties of chicken jerky with pear, pineapple and kiwi extracts. Korean J Culinary Res, 12, 237-250
  8. Hossain MA, Rahman SMM (2011) Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple. Food Res Int, 44, 672-676 https://doi.org/10.1016/j.foodres.2010.11.036
  9. Mynott TL, Crossett B, Prathaling SR (2002) Proteolytic inhibition of Salmonella enterica serovar typhimurium induced activation of the mitogen-activated protein kinases ERK and JNK in cultured human intestinal cells. Infect Immun, 70, 86-95 https://doi.org/10.1128/IAI.70.1.86-95.2002
  10. Maurer HR (2001) Bromelain : biochemistry, pharmacology and medical use. Cell Mol Life Sci, 58, 1234-1245 https://doi.org/10.1007/PL00000936
  11. Gaspani L, Limiroli E, Ferrario P, Bianchi M (2002) In vivo and in vitro effects of bromelain on PGE (2) and SP concentrations in the inflammatory exudate in rats. Pharmacology, 65, 83-86 https://doi.org/10.1159/000056191
  12. Holdsworth SD (1971) Dehydration of food products. J Food Technol, 6, 331-370
  13. Manhart N, Akomeah R, Bergmeister H, Spittler A, Ploner M, Roth E (2002) Administration of proteolytic enzymes bromelain and trypsin diminish the number of CD4$^+$ cells and the interferon-$\gamma$ response in Peyer's patches and spleen in endotoxemic balb/c mice. Cell Immunol, 215, 113-119 https://doi.org/10.1016/S0008-8749(02)00019-9
  14. Park HM, No HK, Lee SH, Yoon KS, Park CS, Hong JH (2013) Quality characteristics of microencapsulated $\beta$-carotene prepared by different molecular weight chitosan. J Chitin Chitosan, 18, 26-31
  15. Han MW, Yoon KS (2009) Quality characteristics of spray drying microparticulated calcium after wet-grinding. Korean J Food Sci Technol, 41, 657-661
  16. Hogan SA, McNamee BF, O'Riordan ED, O'Sullivan, M (2001) Emulsification and microencapsulation properties of sodium caseinate/carbohydrate blends. Int Dairy J, 11, 137-144 https://doi.org/10.1016/S0958-6946(01)00091-7
  17. Boatright WL, Hettiarachchy NS (1995) Spray-drided soy protein isolate solubility, gelling characteristics and extractable protein as affected by antioxidants. J Food Sci, 60, 806-809 https://doi.org/10.1111/j.1365-2621.1995.tb06234.x
  18. Reineccius GA (1991) Carbohydrates for flavor encapsulation. Food Technol, 45, 144-150
  19. Dzondo-Gadet A, Nzikou JM, Etoumongo A, Linder A, Desobry S (2005) Encapsulation and storage of safou pulp oil in 6DE maltodextrins. Process Biochem, 40, 265-271 https://doi.org/10.1016/j.procbio.2004.01.013
  20. Han SC, Heo EJ, Lee KY, Kim YZ, Kim JC (2003) Antioxidant effect of vitamin-C/alginate gel-entrapped liposomes for resistance of DHA autoxidation. Korean J Biotechnol Bioeng, 18, 229-233
  21. Kunitz M (1947) Crystalline soybean trypsin inhibitor. J Gen Physiol 30, 291-295 https://doi.org/10.1085/jgp.30.4.291
  22. Phillips RD, Chinnan MS, Granch AI, Miller J, Mcwatters KH (1998) Effects of pretreatment on functional and nutritional properties of cowpea meal. J Food Sci, 53, 805-809
  23. Hur SJ, Lee SK, Kim YC, Choi IW (2012) Development of in vitro human digestion models for health functional food research. Food Sci Ind, 45, 40-49
  24. Yoo SA, Seo SH, Hyun SY, Son HS (2013) Characteristics of crude protease from fruits and traditional Korean fermentation starters. J Korean Soc Food Sci Nutr, 42, 1461-1466 https://doi.org/10.3746/jkfn.2013.42.9.1461
  25. Kim MH, Rho JH, Song HN (2010) Stability and optimization of crude protease extracted from Korean kiwifruits. Korean J Food Sci Technol, 42, 554-558
  26. Kim JW, Kwon YR, Yoon KS (2012) Quality characteristics and antioxidant properties in spray-dried and freeze-dried powder prepared with powdered seaweed extracts. Korean J Food Sci, 44, 716-721 https://doi.org/10.9721/KJFST.2012.44.6.716
  27. Jeong JW, Park KJ, Kim MH, Kim DS (2006) Changes in quality of spray-dried and freeze-dried Takju powder during storage. Korean J Food Sci, 38, 513-520
  28. Hwang SH, Hong JH, Jeong YJ, Yoon KS (2002) Effects of the proportions of wall materials on the characteristics of spray-dried vinegar. Korean J Food Preserv, 9, 189-193
  29. Rosenberg M, Kopelman IJ, Talmon Y (1990) Factors affecting in spray-drying microencapsulation of volatile materials. J Agric Food Chem, 50, 139-144
  30. Kim JW, Park IK, Yoon KS (2013) Phytochemical compounds and quality characteristics of spray-dried powders with the blanching condition and selected forming agents from pressed extracts of Ligularia fischeri leaves. Korean J Food, 20, 659-667 https://doi.org/10.11002/kjfp.2013.20.5.659
  31. Moon JH, Kim RS, Choi HD, Kim YS (2010) Nutrient composition and physicochemical properties of Korean taro flours according to cultivars. Korean J Food Sci Technol, 42, 613-619
  32. Chung HS, Hong JH, Youn KS (2005) Quality characteristics of granule prepared by protein-bound polysaccharide isolated from Agaricus blazei and selected forming agents. Korean J Food Preserv, 12, 247-251
  33. Kim HR, Seog EJ, Lee JH, Rhim JW (2007) Physicochemical properties of onion powder as influenced by drying methods. J Korean Soc Food Sci Nutr, 36, 342-347 https://doi.org/10.3746/jkfn.2007.36.3.342
  34. Pillay V, Fassihi R (1999) In vitro release modulation from crosslinked pellets for site-specific drug delivery to the gastrointestinal tract. I. Comparison of pH-responsive drug release and associated kinetics. J Control Rel, 59, 229-242 https://doi.org/10.1016/S0168-3659(98)00196-5

Cited by

  1. Antioxidant activities of chlorella extracts and physicochemi characteristics of spray-dried chlorella powders vol.22, pp.4, 2015, https://doi.org/10.11002/kjfp.2015.22.4.591
  2. Quality characteristics of spray dried powder from unripe fig extract vol.23, pp.3, 2016, https://doi.org/10.11002/kjfp.2016.23.3.355
  3. 호박고구마 효소 분해물의 분무건조 분말 제조 및 물리화학적 품질특성 vol.24, pp.2, 2015, https://doi.org/10.11002/kjfp.2017.24.2.246
  4. Temperature Conditions for Making Savory Microencapsulation Powder from the Hydrolysate of Soy Sauce Residue vol.50, pp.6, 2021, https://doi.org/10.3746/jkfn.2021.50.6.562