DOI QR코드

DOI QR Code

Improvement of Radar Rainfall Estimation Using Radar Reflectivity Data from the Hybrid Lowest Elevation Angles

혼합 최저고도각 반사도 자료를 이용한 레이더 강우추정 정확도 향상

  • Lyu, Geunsu (Center for Atmospheric REmote sensing (CARE)) ;
  • Jung, Sung-Hwa (Center for Atmospheric REmote sensing (CARE)) ;
  • Nam, Kyung-Yeub (Applied Meteorology Research Division, National Institute of Meteorological Research) ;
  • Kwon, Soohyun (Research and Training Team for Future Creative Astrophysicists and Cosmologists and Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Lee, Cheong-Ryong (Research and Training Team for Future Creative Astrophysicists and Cosmologists and Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Lee, Gyuwon (Center for Atmospheric REmote sensing (CARE))
  • 류근수 (경북대학교 대기원격탐사연구소) ;
  • 정성화 (경북대학교 대기원격탐사연구소) ;
  • 남경엽 (기상청 국립기상연구소 응용기상연구과) ;
  • 권수현 (경북대학교 천문대기과학과 및 천체물리 및 우주론분야 미래 창의 인재 양성팀) ;
  • 이청룡 (경북대학교 천문대기과학과 및 천체물리 및 우주론분야 미래 창의 인재 양성팀) ;
  • 이규원 (경북대학교 대기원격탐사연구소)
  • Received : 2014.11.21
  • Accepted : 2014.12.18
  • Published : 2015.02.28

Abstract

A novel approach, hybrid surface rainfall (KNU-HSR) technique developed by Kyungpook Natinal University, was utilized for improving the radar rainfall estimation. The KNU-HSR technique estimates radar rainfall at a 2D hybrid surface consistings of the lowest radar bins that is immune to ground clutter contaminations and significant beam blockage. Two HSR techniques, static and dynamic HSRs, were compared and evaluated in this study. Static HSR technique utilizes beam blockage map and ground clutter map to yield the hybrid surface whereas dynamic HSR technique additionally applies quality index map that are derived from the fuzzy logic algorithm for a quality control in real time. The performances of two HSRs were evaluated by correlation coefficient (CORR), total ratio (RATIO), mean bias (BIAS), normalized standard deviation (NSD), and mean relative error (MRE) for ten rain cases. Dynamic HSR (CORR=0.88, BIAS= $-0.24mm\;hr^{-1}$, NSD=0.41, MRE=37.6%) shows better performances than static HSR without correction of reflectivity calibration bias (CORR=0.87, BIAS= $-2.94mm\;hr^{-1}$, NSD=0.76, MRE=58.4%) for all skill scores. Dynamic HSR technique overestimates surface rainfall at near range whereas it underestimates rainfall at far ranges due to the effects of beam broadening and increasing the radar beam height. In terms of NSD and MRE, dynamic HSR shows the best results regardless of the distance from radar. Static HSR significantly overestimates a surface rainfall at weaker rainfall intensity. However, RATIO of dynamic HSR remains almost 1.0 for all ranges of rainfall intensity. After correcting system bias of reflectivity, NSD and MRE of dynamic HSR are improved by about 20 and 15%, respectively.

레이더 반사도를 이용한 강수추정의 개선을 위해 새로운 접근 방식인 경북대학교에서 개발한 하이브리드 고도면을 이용한 강수량 추정기법(Hybrid Surface Rainfall, KNU-HSR)을 사용하였다. KNU-HSR기법은 지형에코와 레이더 빔차폐의 영향을 받지 않는 2차원 하이브리드 고도면에서의 반사도를 이용하여 강수량을 추정한다. 본 연구에서는 정적 HSR 및 동적 HSR기법이 사용되었으며 비교 검증되었다. 정적 HSR은 빔차폐지도와 지형에코지도를 사용하며, 동적 HSR은 정적 HSR에 추가적으로 실시간 퍼지로직 품질관리를 통한 품질지수지도를 사용한다. 검증을 위해 상관계수(correlation coefficient), 총비율(total ratio), 평균편의(mean bias), 정규화된 표준편차(normalized standard deviation), 평균 상대오차(mean relative error)를 사용하였으며, 10개 강우사례의 지상우량계 강우자료를 이용하여 두 HSR의 강우추정 성능을 평가하였다. 모든 검증지수에서 동적 HSR은 반사도 보정을 하지 않은 정적 HSR에 비해 더 우수한 성능을 보였다. 동적 HSR은 레이더로부터 근거리에서는 과대추정하였으며 원거리에서는 빔 폭 확장 및 빔 고도증가로 인해 과소추정하였다. 동적 HSR의 정규화된 표준편차와 평균상대오차는 레이더로부터의 거리에 관계없이 가장 좋은 결과를 보였다. 정적 HSR은 약한 강우강도에서 상당히 과대추정하였으나 동적 HSR은 모든 강우강도에서 1.0에 총비율을 보였다. 반사도의 시스템오차 보정 후, 동적 HSR의 정규화된 표준편차와 평균상대오차는 각각 약 20%와 15%로 개선되었다.

Keywords

References

  1. Andrieu, H., Creutin, J.D., Delrieu, G., and Faure, D., 1997, Use of a weather radar for the hydrology of a mountainous area. Part I: Radar measurement interpretation. Journal of Hydrology, 193, 1-25. https://doi.org/10.1016/S0022-1694(96)03202-7
  2. Atlas, D., Srivastava, R.C., and Sekhon, R.S., 1973, Doppler radar characteristics of precipitation at vertical incidence. Reviews of Geophysics, 11, 1-35. https://doi.org/10.1029/RG011i001p00001
  3. Bech, J., Codina, B., Lorente, J., and Bebbington, D., 2003, The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient. Journal of Atmospheric and Oceanic Technology, 20, 845-855. https://doi.org/10.1175/1520-0426(2003)020<0845:TSOSPW>2.0.CO;2
  4. Bellon, A. and Zawadzki, I., 2003, A 9-year summary of radar characteristics of mesocyclonic storms and of deep convection in Southern Quebec. Atmosphereocean, 41, 99-120.
  5. Berenguer, M., Sempere-Torres, D., Corral. C., and S?nchez-Diezma, R., 2006, A fuzzy logic technique for identifying nonprecipitating echoes in radar scans. Journal of Atmospheric and Oceanic Technology, 23, 1157-1180. https://doi.org/10.1175/JTECH1914.1
  6. Bringi, V., Chandrasekar, V., Balakrishnan, N., and Zrnic, D., 1990, An examination of propagation effects in rainfall on radar measurements at microwave frequencies. Journal of Atmospheric and Oceanic Technology, 7, 829-840. https://doi.org/10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2
  7. Cho, Y.H., Lee, G., Kim, K.E., and Zawadzki, I., 2006, Identification and removal of ground echoes and anomalous propagation using the characteristics of radar echoes. Journal of Atmospheric and Oceanic Technology, 23, 1206-1222. https://doi.org/10.1175/JTECH1913.1
  8. Creutin, J.D., Andrieu, H., and Faure, D., 1997, Use of a weather radar for the hydrology of a mountainous area. Part II: Radar measurement validation. Journal of Hydrology, 193, 26-44. https://doi.org/10.1016/S0022-1694(96)03203-9
  9. Delrieu, G. and Creutin, J.D., 1995, Simulation of radar mountain returns using a digitized terrain model. Journal of Atmospheric and Oceanic Technology, 12, 1038-1049. https://doi.org/10.1175/1520-0426(1995)012<1038:SORMRU>2.0.CO;2
  10. Doviak, R.J. and Zrnic, D.S., 1993, Doppler radar and weather observations. Academic Press, San Diego, USA, 562 p.
  11. Fulton, R.A., Breidenbach, J.P., Seo, D.J., Miller, D.A., and OOBannon, T., 1998, The WSR-88D rainfall algorithm. Weather and Forecasting, 13, 377-395. https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
  12. Giangrande, S.E. and Ryzhkov, A.V., 2005, Calibration of dualpolarization radar in the presence of partial beam blockage. Journal of Atmospheric and Oceanic Technology, 22, 1156-1166. https://doi.org/10.1175/JTECH1766.1
  13. Grecu, M. and Krajewski, W.F., 1999, Detection of anomalous propagation echoes in weather radar data using neural networks. Geoscience and Remote Sensing, 37, 287-296. https://doi.org/10.1109/36.739163
  14. Hubbert, C.J., Dixon, M., Ellis, S.M., and Meymaris, G., 2009, Weather radar ground clutter. Part I: Identification, modeling, and simulation. Journal of Atmospheric and Oceanic Technology, 26, 1165-1180. https://doi.org/10.1175/2009JTECHA1159.1
  15. Jung, S.H. and Kim, K.E. 2007, Simulation of radar beam propagation using digital elevation model. Proceedings of the spring meeting of Korea Meteorological Society, Daejeon, Korea, 346-347.
  16. Kabeche, F., Ventura, J.F., Fradon, B., Boumahmoud, A.A., Dupuy, P., Westrelin, S., and Tabary, P., 2011, Quantitative precipitation estimation (QPE) in the French Alps with a dense network of polarimetric Xband radars. Proceedings of the 35th Conference on Radar Meteorology, Pittsburgh, PA, American Meteorological Society, 11-150. https://ams.confex.com/ams/35Radar/webprogram/Paper191894.html.
  17. Korea Air Force, 2012, Development of tracking technique of convective cell around an air base using three dimensional radar mosaic. 73rd weather group, 82 p. (in Korean)
  18. Kruger, A. and Krajewski, W.F., 2002, Two-dimensional video disdrometer: A description. Journal of Atmospheric and Oceanic Technology, 19, 602-617. https://doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2
  19. Kucera, P.A., Krajewski, W.F., and Young, C.B., 2004, Radar beam occultation studies using GIS and DEM technology: An example study of Guam. Journal of Atmospheric and Oceanic Technology, 21, 995-1006. https://doi.org/10.1175/1520-0426(2004)021<0995:RBOSUG>2.0.CO;2
  20. Kwon, S., Lee, G., Jung, S.-H., Park, H.S., Suk, M.-K., Cha, J.W., and Lee, C.-K., 2012, Evaluation Radar and KNU QPE Algorithm. Proceedings of Internatinol Weather Radar Workshop, Daegu, Korea.
  21. Kwon, S., 2012, Rainfall estimation from an operational Sband dual-polarization radar: Effect of radar calibration and uncertainty in dual-polarimetric parameters. M.S. thesis, Kyungpook National University, Daegu, Korea, 89 p.
  22. Kwon, S., Lee, G.W., and Kim, G., 2015, Rainfall estimation from an operational S-band dual-polarization radar: Effect of radar calibration. Journal of the Meteorological Society of Japan, 93, doi:10.2151/jmsj.2015-005.
  23. Lang, T.J., Nesbitt, S.W., and Carey, L.D., 2009, On the correction of partial beam blockage in polarimetric radar data. Journal of Atmospheric and Oceanic Technology, 26, 943-957. https://doi.org/10.1175/2008JTECHA1133.1
  24. Lee, G.W. and Zawadzki, I., 2006, Radar calibration by gage, disdrometer, and polarimetry: Theoretical limit caused by the variability of drop size distribution and application to fast scanning operational radar data. Journal of Hydrology, 328, 83-97. https://doi.org/10.1016/j.jhydrol.2005.11.046
  25. Maddox, R.A., Zhang, J., Gourley, J.J., and Howard, K.W., 2002, Weather radar coverage over the contiguous United States. Weather and Forecasting, 17, 927-934. https://doi.org/10.1175/1520-0434(2002)017<0927:WRCOTC>2.0.CO;2
  26. Ministry of Land, Infrastructure and Transport, 2009, Study on the optimization of scan strategy of Mt. Bisl rain radar. Han River Flood Control Office, 11-1611492-000056-01, 199 p. (in Korean)
  27. O'Bannon, T., 1997, Using a terrain-based hybrid scan to improve WSR-88D precipitation estimates. In. Proc. 28th Conference on Radar Meteorology, American Meteorological Society, 506-507.
  28. Park, S.-G., Maki, M., Iwanami, K., Bringi, V.N., and Chandrasekar, V., 2005a, Correction of radar reflectivity and differential reflectivity for rain attenuation at Xband. Part II: Evaluation and application. Journal of Atmospheric and Oceanic Technology, 22, 1633-1655. https://doi.org/10.1175/JTECH1804.1
  29. Park, S.-G., Bringi, V.N., Chandrasekar, V., Maki, M., and Iwanami, K., 2005b, Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part I: Theoretical and empirical basis. Journal of Atmospheric and Oceanic Technology, 22, 1621-1632. https://doi.org/10.1175/JTECH1803.1
  30. Park, S.-G. and Lee, G., 2010, Calibration of radar reflectivity measurements from the KMA operational radar network. Asia-Pacific Journal of Atmospheric Sciences, 46, 243-259. https://doi.org/10.1007/s13143-010-1010-3
  31. Rico-Ramirez, M.A. and Cluckie, I.D., 2008, Classification of ground clutter and anomalous propagation using dual-polarization weather radar. Geoscience and Remote Sensing, 46, 1892-1904. https://doi.org/10.1109/TGRS.2008.916979
  32. Shedd, R.C., Smith, J.A., and Walton, M.L., 1989, Sectorized hybrid scan strategy of the NEXRAD precipitation processing system. In. Proc. International symposium Hydrological Applications of Weather Radar, University of Salford, 9 p.
  33. Shedd, R.C., Smith, J.A., and Walton, M.L., 1991, Sectorized hybrid scan strategy of the NEXRAD precipitation-processing system. In Cluckie, I.D. and Collier, C.G. (eds.), Hydrological Applications of Weather Radar. Ellis Horwood, Chichester, England, 151-159.
  34. Steiner, M. and Smith, J.A., 2002, Use of threedimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data. Journal of Atmospheric and Oceanic Technology, 19, 673-686. https://doi.org/10.1175/1520-0426(2002)019<0673:UOTDRS>2.0.CO;2
  35. Thurai, M., Huang, G.J., Bringi, V.N., Randeu, W.L., and Schonhuber, M., 2007, Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. Journal of Atmospheric and Oceanic Technology, 24, 1019-1032. https://doi.org/10.1175/JTECH2051.1
  36. Vivekanandan, J., Adams, W., and Bringi, V., 1991, Rigorous approach to polarimetric radar modeling of hydrometeor orientation distributions. Journal of Applied Meteorology, 30, 1053-1063. https://doi.org/10.1175/1520-0450(1991)030<1053:RATPRM>2.0.CO;2
  37. Ye, B.-Y., 2013, Quality control of radar moment data by combining moment-based fuzzy logic algorithm and radar signal processing. M.S.thesis, Kyungpook National University, Daegu, Korea, 72 p.
  38. Zhang, J., Howard, K., Langston, C., Vasiloff, S., Kaney, B., Arthur, A., Cooten, S.V., Kelleher, K., Kitzmiller, D., Ding, F., Seo, D.-J., Wells, E., and Dempsey, C., 2011, National mosaic and multi-sensor QPE (NMQ) system: Description, results, and future plans. Bulletin of the American Meteorological Society, 92, 1321-1338. https://doi.org/10.1175/2011BAMS-D-11-00047.1
  39. Zhang, P., Zrnic, D., and Ryzhkov, A., 2013, Partial beam blockage correction using polarimetric radar measurements. Journal of Atmospheric and Oceanic Technology, 30, 861-872. https://doi.org/10.1175/JTECH-D-12-00075.1

Cited by

  1. Impacts of Topography on Airflow and Precipitation in the Pyeongchang Area Seen from Multiple-Doppler Radar Observations vol.146, pp.10, 2018, https://doi.org/10.1175/MWR-D-17-0394.1