DOI QR코드

DOI QR Code

Collapse Vulnerability and Fragility Analysis of Substandard RC Bridges Rehabilitated with Different Repair Jackets Under Post-mainshock Cascading Events

  • Fakharifar, Mostafa (Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology) ;
  • Chen, Genda (Missouri University of Science and Technology) ;
  • Dalvand, Ahmad (Department of Engineering, Lorestan University) ;
  • Shamsabadi, Anoosh (Office of Earthquake Engineering, California Department of Transportation)
  • Received : 2014.10.18
  • Accepted : 2015.07.30
  • Published : 2015.09.30

Abstract

Past earthquakes have signaled the increased collapse vulnerability of mainshock-damaged bridge piers and urgent need of repair interventions prior to subsequent cascading hazard events, such as aftershocks, triggered by the mainshock (MS). The overarching goal of this study is to quantify the collapse vulnerability of mainshock-damaged substandard RC bridge piers rehabilitated with different repair jackets (FRP, conventional thick steel and hybrid jacket) under aftershock (AS) attacks of various intensities. The efficacy of repair jackets on post-MS resilience of repaired bridges is quantified for a prototype two-span single-column bridge bent with lap-splice deficiency at column-footing interface. Extensive number of incremental dynamic time history analyses on numerical finite element bridge models with deteriorating properties under back-to-back MS-AS sequences were utilized to evaluate the efficacy of different repair jackets on the post-repair behavior of RC bridges subjected to AS attacks. Results indicate the dramatic impact of repair jacket application on post-MS resilience of damaged bridge piers-up to 45.5 % increase of structural collapse capacity-subjected to aftershocks of multiple intensities. Besides, the efficacy of repair jackets is found to be proportionate to the intensity of AS attacks. Moreover, the steel jacket exhibited to be the most vulnerable repair intervention compared to CFRP, irrespective of the seismic sequence (severe MS-severe or moderate AS) or earthquake type (near-fault or far-fault).

Keywords

Acknowledgement

Supported by : U.S. National Science Foundation

References

  1. Abdelnaby, A., & Elnashai, A. (2014). Performance of degrading reinforced concrete frame systems under Tohoku and Christchurch earthquake sequences. Journal of Earthquake Engineering 18(7), 1009-1036. doi:10.1080/13632469.2014.923796.
  2. Andrawes, B., Shin, M., & Wierschem, N. (2009). Active confinement of reinforced concrete bridge columns using shape memory alloys. Journal of Bridge Engineering 15(1), 81-89. doi:10.1061/ASCEBE.1943-5592.0000038.
  3. Arias, A. (1970). A measure of earthquake intensity. In R. J. Hansen (Ed.), Seismic design for nuclear power plants (pp. 438-483). Cambridge, MA: MIT Press.
  4. Aschheim, M., & Black, E. (1999). Effects of prior earthquake damage on response of simple stiffness-degrading structures. Earthquake Spectra 15(1), 1-24. https://doi.org/10.1193/1.1586026
  5. ATC-63. (2009). Quantification of building seismic performance factors. Redwood City, CA: FEMA P695.
  6. Baker, J. W., & Cornell, C. A. (2006). Vector-valued ground motion intensity measures for probabilistic seismic demand analysis. Berkeley, CA: Pacific Earthquake Engineering Research Center, College of Engineering, University of California.
  7. Baker, J. W., Lin, T., Shahi, S. K., & Jayaram, N. (2011). New ground motion selection procedures and selection motions for the PEER transportation research program. PEER report 2011/03, Berkeley, CA: Pacific Earthquake Engineering Research Center.
  8. Bearman, C. F. (2012). Post-earthquake assessment of reinforced concrete frames. M.S. Thesis, Department of Civil and Environmental Engineering, University of Washington, Seattle, WA.
  9. Berry, M. P., & Eberhard, M. O. (2007). Performance modeling strategies for modern reinforced concrete bridge columns. PEER report 2007/07. Berkeley, CA: Pacific Engineering Research Center, University of California.
  10. Bianchi, F., Sousa, R., & Pinho, R. (2011). Blind prediction of a full-scale RC bridge column tested under dynamic conditions. In Proceedings of the 3rd international conference on computational methods in structural dynamics and earthquake engineering (COMPDYN 2011) Corfu, Greece, Paper no. 294.
  11. Billah, A. M., Alam, M. S., & Bhuiyan, M. R. (2013). Fragility analysis of retrofitted multicolumn bridge bent subjected to near-fault and far-field ground motion. Journal of Bridge Engineering. doi:10.1061/(ASCE)BE.1943-5592.0000452.
  12. Buckle, I., Friedland, I., Mander, J., Martin, G., Nutt, R., & Power, M. (2006). Seismic retrofitting manual for highway structures: Part 1-bridges (No. FHWA-HRT-06-032).
  13. Calderone, A., Lehman, D. E., & Moehle, J. P. (2001). Behavior of reinforced concrete bridge columns having varying aspect ratios and varying lengths of confinement. Berkeley, CA: Pacific Earthquake Engineering Research Center.
  14. California Department of Transportation. (2004). Caltrans bridge design specification. Sacramento, CA: California Department of Transportation.
  15. Chang, L., Peng, F., Ouyang, Y., Elnashai, A. S., & Spencer, B. F, Jr. (2012). Bridge seismic retrofit program planning to maximize postearthquake transportation network capacity. Journal of Infrastructure Systems 18(2), 75-88. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000082
  16. Cho, J. Y., & Pincheira, J. A. (2006). Inelastic analysis of reinforced concrete columns with short lap splices subjected to reversed cyclic loads. ACI Structural Journal 103(2), 280-290.
  17. Chopra, A. K., & Goel, R. K. (2002). A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering and Structural Dynamics 31(3), 561-582. https://doi.org/10.1002/eqe.144
  18. Cornell, C. A., Jalayer, F., Hamburger, R. O., & Foutch, D. A. (2002). Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines. Journal of Structural Engineering 128(4), 526-533. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(526)
  19. Di Sarno, L. (2013). Effects of multiple earthquakes on inelastic structural response. Engineering Structures 56, 673-681. https://doi.org/10.1016/j.engstruct.2013.05.041
  20. Dutta, A., & Mander, J. B. (1998). Seismic fragility analysis of highway bridges. In Proceedings of the INCEDE-MCEER center-to-center project workshop on earthquake engineering Frontiers in transportation systems (pp. 22-23).
  21. ElGawady, M., Endeshaw, M., McLean, D., & Sack, R. (2009). Retrofitting of rectangular columns with deficient lap splices. Journal of Composites for Construction 14(1), 22-35. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000047
  22. Fakharifar, M., Chen, G., Arezoumandi, M., & ElGawady, M. (2015a). Hybrid jacketing for rapid repair of seismically damaged reinforced concrete columns. Transportation Research Record: Journal of the Transportation Research Board. doi:10.3141/2522-07.
  23. Fakharifar, M., Chen, G., Lin, Z., & Woolsey, Z. (2014a). Behavior and strength of passively confined concrete filled tubes. In The 10th U.S. National conference on earthquake engineering: July 21-25, 2014, Anchorage, AL.
  24. Fakharifar, M., Chen, G., Sneed, L., & Dalvand, A. (2015b). Seismic performance of post-mainshock FRP/steel repaired RC bridge columns subjected to aftershocks. Composites Part B: Engineering. doi:10.1016/j.compositesb.2014.12.
  25. Fakharifar, M., Dalvand, A., Arezoumandi, M., Sharbatdar, M. K., Chen, G., & Kheyroddin, A. (2014b). Mechanical properties of high performance fiber reinforced cementitious composites. Construction and Building Materials 71, 510-520. doi:10.1016/j.conbuildmat.2014.08.068.
  26. Fakharifar, M., Dalvand, A., Sharbatdar, M. K., Chen, G., & Sneed, L. (2015c). Innovative hybrid reinforcement constituting conventional longitudinal steel and FRP stirrups for improved seismic strength and ductility of RC structures. Frontiers of Structural and Civil Engineering. doi:10.1007/s11709-015-0295-9.
  27. Fakharifar, M., Sharbatdar, M. K., & Lin, Z. (2013). Seismic performance and global ductility of reinforced concrete frames with CFRP laminates retrofitted joints. In Structures congress 2013 (pp. 2080-2093). ASCE.
  28. Fakharifar, M., Sharbatdar, M. K., Lin, Z., Dalvand, A., Sivandi-Pour, A., & Chen, G. (2014c). Seismic performance and global ductility of RC frames rehabilitated with retrofitted joints by CFRP laminates. Earthquake Engineering and Engineering Vibration, 13(1), 59-73. https://doi.org/10.1007/s11803-014-0212-6
  29. FEMA 356. (2000). Prestandard and commentary for the seismic rehabilitation of buildings. Prepared by ASCE for Federal Emergency Management Agency, Washington, D.C.
  30. Ferracuti, B., Pinho, R., Savoia, M., & Francia, R. (2009). Verification of displacement-based adaptive pushover through multi-ground motion incremental dynamic analyses. Engineering Structures 31(8), 1789-1799. https://doi.org/10.1016/j.engstruct.2009.02.035
  31. Ferracuti, B., & Savoia, M. (2005). Cyclic behaviour of FRPwrapped columns under axial and flexural loadings. In Proceedings of the international conference on fracture, Turin, Italy.
  32. Filippou, F. C., Popov, E. P., & Bertero, V. V. (1983). Effects of bond deterioration on hysteretic behaviour of reinforced concrete joints. Report EERC 83-19. Berkeley, CA: Earthquake Engineering Research Center, University of California.
  33. Fragiadakis, M., Pinho, R., & Antoniou, S. (2008). Modelling inelastic buckling of reinforcing bars under earthquake loading. In M. Papadrakakis, D. C. Charmpis, N. D. Lagaros, Y. Tsompanakis, & A. A. Balkema (Eds.), Progress in computational dynamics and earthquake engineering. Leiden, Netherlands: Taylor & Francis.
  34. Grelle, S. V., & Sneed, L. H. (2013). Review of anchorage systems for externally bonded FRP laminates. International Journal of Concrete Structures and Materials 7(1), 17-33. doi:10.1007/s40069-013-0029-0.
  35. Harajli, M., Hamad, B., & Karam, K. (2002). Bond-slip response of reinforcing bars embedded in plain and fiber concrete. Journal of Materials in Civil Engineering 14(6), 503-511. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:6(503)
  36. Haroun, M. A., & Elsanadedy, H. M. (2005). Fiber-reinforced plastic jackets for ductility enhancement of reinforced concrete bridge columns with poor lap-splice detailing. Journal of Bridge Engineering 10(6), 749-757. https://doi.org/10.1061/(ASCE)1084-0702(2005)10:6(749)
  37. Haselton, C. B., Liel, A. B., Taylor Lange, S., & Deierlein, G. G. (2008). Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings. PEER report 2007/03. Berkeley, CA: Pacific
  38. Engineering Research Center, University of California. HAZUS-MH. (2003). Multi-hazard loss estimation methodology earthquake model. HAZUS-MH MR3 technical manual. Washington, DC: Federal Emergency Management Agency (FEMA).
  39. He, R., Sneed, L. H., & Belarbi, A. (2013). Rapid repair of severely damaged RC columns with different damage conditions: An experimental study. International Journal of Concrete Structures and Materials 7(1), 35-50. doi:10.1007/s40069-013-0030-7.
  40. Huang, W., & Andrawes, B. (2014). Seismic performance of SMA retrofitted multiple-frame RC bridges subjected to stong mainshock-aftershock sequences. In 10th U.S. National conference on earthquake engineering (10NCEE) Anchorage, Alaska.
  41. Jirawattanasomkul, T. (2013). Ultimate shear behavior and modeling of reinforced concrete members jacketed by fiber reinforced polymer and steel. PhD thesis. Hokkaido University, Sapporo, Japan.
  42. Kent, D. C., & Park, R. (1973). Cyclic load behaviour of reinforcing steel. Strain 9(3), 98-103. https://doi.org/10.1111/j.1475-1305.1973.tb01816.x
  43. Kunnath, S. K., El-Bahy, A., Taylor, A. W., & Stone, W. C. (1997). Cumulative seismic damage of reinforced concrete bridge piers. In Technical report NCEER (No. 97-0006).
  44. US National Center for Earthquake Engineering Research. Lee, D. H., Kim, D., & Lee, K. (2009). Analytical approach for the earthquake performance evaluation of repaired/retrofitted RC bridge piers using time-dependent element. Nonlinear Dynamics 56(4), 463-482. https://doi.org/10.1007/s11071-008-9440-5
  45. Lee, D. H., Park, J., Lee, K., & Kim, B. H. (2011). Nonlinear seismic assessment for the post-repair response of RC bridge piers. Composites Part B Engineering 42(5), 1318-1329. https://doi.org/10.1016/j.compositesb.2010.12.023
  46. Li, Y., Song, R., & Van De Lindt, J. W. (2014). Collapse fragility of steel structures subjected to earthquake mainshockaftershock sequences. Journal of Structural Engineering 140(12), 04014095. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001019
  47. Li, Y., Song, R., van de Lindt, J., Nazari, N., & Luco, N. (2012). Assessment of wood and steel structures subjected to earthquake mainshock-aftershock. In 15th world conference on earthquake engineering, Lisbon, Portugal.
  48. Lin, Z., Fakhairfar, M., Wu, C., Chen, G., Bevans, W., Gunasekaran, A. V. K., & Sedighsarvestani, S. (2013). Design, construction and load testing of the Pat Daly Road Bridge in Washington County, MO, with internal glass fiber reinforced polymers reinforcement. Report no. NUTC R275.
  49. Mackie, K. R., & Stojadinovic, B. (2007). R-factor parameterized bridge damage fragility curves. Journal of Bridge Engineering 12(4), 500-510. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:4(500)
  50. Madas, P., & Elnashai, A. S. (1992). A new passive confinement model for transient analysis of reinforced concrete structures. Earthquake Engineering and Structural Dynamics 21, 409-431. https://doi.org/10.1002/eqe.4290210503
  51. Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  52. Marson, J., & Bruneau, M. (2004). Cyclic testing of concretefilled circular steel bridge piers having encased fixed-based detail. Journal of Bridge Engineering, ASCE 9(1), 14-23. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:1(14)
  53. Martinez-Rueda, J. E., & Elnashai, A. S. (1997). Confined concrete model under cyclic load. Materials and Structures 30(197), 139-147. https://doi.org/10.1007/BF02486385
  54. Menegotto, M., & Pinto, P. E. (1973). Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending. In Symposium on the resistance and ultimate deformability of structures acted on by well defined repeated loads, international association for bridge and structural engineering, Zurich, Switzerland (pp. 15-22).
  55. Nazari, N., van de Lindt, J. W., & Li, Y. (2013). Effect of mainshock-aftershock sequences on woodframe building damage fragilities 1. Journal of Performance of Constructed Facilities 29(1), 04014036. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000512
  56. Nielson, B. G., & DesRoches, R. (2007). Analytical seismic fragility curves for typical bridges in the central and southeastern United States. Earthquake Spectra 23(3), 615-633. https://doi.org/10.1193/1.2756815
  57. PEER. (2010). Retrieved July 24, 2014, from http://nisee2.berkeley.edu/peer/prediction_contest/?page_id=25.
  58. Pinto, A. V., Verzeletti, G., Pegon, P., Magonette, G., Negro, P., & Guedes, J., (1996). Pseudo-dynamic testing of largescale R/C Bridges. Report EUR 16378, Ispra (VA), Italy.
  59. Priestley, M. J. N., Calvi, G. M., & Kowalsky, M. J. (2007). Displacement based seismic design of structures. Pavia, Italy: Istituto Universitario di Studi Superiori Press.
  60. Priestley, M. N., Seible, F., & Calvi, G. M. (1996). Seismic design and retrofit of bridges. New York, NY: Wiley.
  61. Ribeiro, F. L., Barbosa, A. R., & Neves, L. C. (2014). Application of reliability-based robustness assessment of steel moment resisting frame structures under post-mainshock cascading events. Journal of Structural Engineering 140(8), A4014008. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000939
  62. Rodriguez, M. E., Botero, J. C., & Villia, J. (1999). Cyclic stress-strain behavior of reinforcing steel including effect of buckling. Journal of Structural Engineering 125(6), 605-612. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:6(605)
  63. Saatcioglu, M., & Grira, M. (1999). Confinement of reinforced concrete columns with welded reinforced grids. ACI Structural Journal 96(1), 29-39.
  64. Saatcioglu, M., & Yalcin, C. (2003). External prestressing concrete columns for improved seismic shear resistance. Journal of Structural Engineering 129(8), 1057-1070. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:8(1057)
  65. Schoettler, M. J., Restrepo, J. I., Guerrini, G., Duck, D. E., & Carrea, F. (2012). A full-scale, single-column bridge bent tested by shake-table excitation. Las Vegas, NV: Center for Civil Engineering Earthquake Research, Department of Civil Engineering, University of Nevada.
  66. Scholz, C. H. (2002). The mechanics of earthquakes and faulting. Cambridge, MA: Cambridge University Press.
  67. Scott, M. H., & Fenves, G. L. (2006). Plastic hinge integration methods for force-based beam-column elements. Journal of Structural Engineering 132(2), 244-252. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:2(244)
  68. Seismosoft. (2013a). SeismoStruct-A computer program for static and dynamic nonlinear analysis of framed structures. www.seismosoft.com.
  69. Seismosoft. (2013b). SeismoStruct ver. 6.0 and 7.0-Verification report.
  70. Shamsabadi, A., Khalili-Tehrani, P., Stewart, J. P., & Taciroglu, E. (2009). Validated simulation models for lateral response of bridge abutments with typical backfills. Journal of Bridge Engineering 15(3), 302-311. doi:10.1061/(ASCE)BE.1943-5592.0000058.
  71. Shinozuka, M., Feng, M. Q., Kim, H. K., & Kim, S. H. (2000). Nonlinear static procedure for fragility curve development. Journal of Engineering Mechanics 126(12), 1287-1295. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1287)
  72. Sivaselvan, M., & Reinhorn, A. M. (1999). Hysteretic models for cyclic behavior of deteriorating inelastic structures. Report MCEER-99-0018, MCEER/SUNY/Buffalo.
  73. Sivaselvan, M., & Reinhorn, A. M. (2001). Hysteretic models for deteriorating inelastic structures. Journal of Engineering Mechanics ASCE 126(6), 633-640, with discussion by Wang and Foliente and closure in Vol. 127, No. 11.
  74. Spoelstra, M., & Monti, G. (1999). FRP-confined concrete model. Journal of Composites for Construction, ASCE 3, 143-150. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143)
  75. Tehrani, P., & Mitchell, D. (2013). Seismic risk assessment of four-span bridges in Montreal designed using the Canadian Bridge design code. Journal of Bridge Engineering 19(8), A4014002. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000499
  76. Terzic, V., & Stojadinovic, B. (2013). Hybrid simulation of bridge response to three-dimensional earthquake excitation followed by truck load. Journal of Structural Engineering 140(8), A4014010.
  77. USGS. (2012). United States Geological Survey. http://www.usgs.gov/.
  78. Vamvatsikos, D., & Cornell, C. A. (2002). Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics 31(3), 491-514. https://doi.org/10.1002/eqe.141
  79. Villaverde, R. (2007). Methods to assess the seismic collapse capacity of building structures: State of the art. Journal of Structural Engineering 133(1), 57-66. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:1(57)
  80. Vosooghi, A., & Saiidi, M. (2010). Post-earthquake evaluation and emergency repair of damaged RC bridge columns using CFRP materials. Rep. no. CCEER-10-05. Reno, NV: Center for Civil Engineering Earthquake Research, Dept. of Civil Engineering, Univ. of Nevada.
  81. Vosooghi, A., & Saiidi, M. S. (2012). Design guidelines for rapid repair of earthquake-damaged circular RC bridge columns using CFRP. Journal of Bridge Engineering 18(9), 827-836. doi:10.1061/(ASCE)BE.1943-5592.0000426.
  82. White, T., & Ventura, C. E. (2004). Ground motion sensitivity of a Vancouver-style high rise. Canadian Journal of Civil Engineering 31, 292-307. https://doi.org/10.1139/l03-102
  83. Xiao, Y., & Ma, R. (1997). Seismic retrofit of RC circular columns using prefabricated composite jacketing. Journal of Structural Engineering 123(10), 1357-1364. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:10(1357)
  84. Yang, J. (2009). Nonlinear responses of high-rise buildings in giant subduction earthquakes. PhD thesis. California Institute of Technology, CA, USA.
  85. Yankelevsky, D. Z., & Reinhardt, H. W. (1989). Uniaxial behavior of concrete in cyclic tension. Journal of Structural Engineering, ASCE 115(1), 166-182. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:1(166)
  86. Ying, X. F., Chen, G., Silva, P. F., LaBoube, R., & Yen, P. W. (2006). Thin steel sheet wrapping on RC columns and steel plate strengthening on beam-column joints for seismic ductility and capacity improvements. In National conference on earthquake engineering, paper no. 513, conference proceeding, San Fransisco, CA, USA, April 18-22, 2006.
  87. Youm, K. S., Lee, H. E., & Choi, S. (2006). Seismic performance of repaired RC columns. Magazine of Concrete Research 58(5), 267-276. https://doi.org/10.1680/macr.2006.58.5.267

Cited by

  1. RC jacketing parameters to retrofit highway bridges vol.14, pp.10, 2015, https://doi.org/10.1007/s10518-016-9914-7
  2. Post‐repair effect of column jackets on aftershock fragilities of damaged RC bridges subjected to successive earthquakes vol.45, pp.7, 2015, https://doi.org/10.1002/eqe.2700
  3. State of the Art of Multihazard Design vol.143, pp.10, 2015, https://doi.org/10.1061/(asce)st.1943-541x.0001893
  4. Assessment of probabilistic seismic performance of RC columns jacketed by FRP winding wires using analytical models vol.171, pp.None, 2015, https://doi.org/10.1016/j.engstruct.2018.05.098
  5. Seismic evaluation and partial retrofitting of concrete bridge bents with defect details vol.16, pp.8, 2019, https://doi.org/10.1590/1679-78255158
  6. Parametric study of medium span bridges retrofitted with reinforced concrete jacketing vol.46, pp.7, 2019, https://doi.org/10.1139/cjce-2018-0465
  7. Evaluation of Seismic Performance of Reinforced Concrete Frame Buildings with Retrofitted Columns vol.146, pp.11, 2015, https://doi.org/10.1061/(asce)st.1943-541x.0002801
  8. Indicators of improvements in seismic performance possible through retrofit of reinforced concrete frame buildings vol.37, pp.1, 2015, https://doi.org/10.1177/8755293020936707