DOI QR코드

DOI QR Code

Quantum Chemical Calculations on the Conformational Structure of the Alanine Oligomer Model

알라닌 올리고머의 배좌구조에 관한 양자화학적 계산

  • Sim, Jae-Ho (Department of Advanced Materal and Chemical Engineering, Halla University)
  • 심재호 (한라대학교 공과대학 신소재화학공학과)
  • Received : 2014.10.10
  • Accepted : 2015.02.12
  • Published : 2015.02.28

Abstract

Conformational change during chain propagation of alanine oligomer was investigated by quantum chemical calculation(QCC) using 2~5mers(${\times}=2{\sim}5$) models. For estimation of the end group effects, two types of end group. "amide type" ($CH_3CONH-and-CONHCH_3$) and "methyl type" ($CH_3CONH-and-CONHCH_3$), were prepared as both ends(N-and-C). Conformers optimized for 5-mer converged to three types of ${\Phi}/{\Psi}$ : ${\alpha}$-helix(g+/g+, or g-/g-), PPII-like(extended helix-like, g+/g-, or g-/g+), and ${\beta}$-extended (t+/t-, or t-/t+), in the order of lower energy, and the energies of left- and right- handed conformers were the same (5-mer. amide type ${\Delta}E=-1.05$, right type ${\Delta}E=-1.62$). Energies of the monomer unit(${\Delta}E$) of ${\alpha}$-helix decreased with increases of monomer.

References

  1. J. Graf, P. H. Nguyen, G. Stock, and H. Schwalbe, "Structure and Dynamics of the Homologous Series of Alanine Peptides", J. Am. Chem. Soc., Vol. 129, 1179-1189 (2007). DOI: http://dx.doi.org/10.1021/ja0660406 https://doi.org/10.1021/ja0660406
  2. N. G. Mirkin and S. Krimm, "Conformation Dependence of the C$C^{\alpha}D^{\alpha}$ Stretch Mode in Peptides. I. Isolated Alanine Peptide Structures", J. Phys. Chem., A, Vol. A111, 5300-5303 (2007). DOI: http://dx.doi.org/10.1021/jp070852m https://doi.org/10.1021/jp070852m
  3. A. Kentsis, M. Mezei, T. Gindin, and R. Osman, "Unfolded State of Polyalanine is a Segmented Polyproline II Helix", PROTEINS: Structure, Function, and Bioinformatics, Vol. 55, 493-501 (2004). DOI: http://dx.doi.org/10.1002/prot.20051 https://doi.org/10.1002/prot.20051
  4. M. Kobayashi and H. Sato, "Examinaion of Conformations of Isotactic Methyl Methacrylate Oligomers by Quantum Chemical Calculation", Kobunshi Ronbun shu, Vol. 64, No. 2. 119-127 (2007). DOI: http://dx.doi.org/10.1295/koron.64.119 https://doi.org/10.1295/koron.64.119
  5. M. Kobayashi and H. Sato, "Conformational Analysis of Ethylene oxide and Ethylene Imine Oligomers by Quantum Chemical Calculation", Polymer Journal, Vol. 40, No. 4, 343-349 (2008). DOI: http://dx.doi.org/10.1295/polymj.PJ2007140 https://doi.org/10.1295/polymj.PJ2007140
  6. M. Kobayashi, M. Takahashi, and H. Sato, "Conformational Analysis for Hydrated Ethylene Imine Oligomer Model by Quantum Chemical Calculations", Polymer Journal, Vol. 41, No. 10, 880-887 (2009). DOI: http://dx.doi.org/10.1295/polymj.PJ2009115 https://doi.org/10.1295/polymj.PJ2009115
  7. M. Kobayashi and H. Sato, "Structure Analysis for Hydrate Model of Ethyleneimine Oligomer by Quantum Chemical Calculation", Pharmacology & Pharmacy; Vol. 1, 60-68 (2010). DOI: http://dx.doi.org/10.4236/pp.2010.12009 https://doi.org/10.4236/pp.2010.12009
  8. N. G. Mirkin, S. Krimm, "Conformation Dependence of the $C^{\alpha}D^{\alpha}$ Stretch Mode in Peptides. II. Explicitly Hydrated Alanine Peptide Structures", Biopolymer, Vol. 91, 791-800 (2009) DOI: http://dx.doi.org/10.1002/bip.21250 https://doi.org/10.1002/bip.21250
  9. "Gaussian 03 User's Reference", Gaussian Inc., Carnegie, PA, 2003
  10. J. Makowska, A. Liwo, W. Zmudzinska, A. Lewandowska, L. Chmurzynski, and H. A Scheraga, "Like-Charged Residues at the Ends of Oligoalanine Sequences Might Induce a Chain Reversal", Biopolymers, Vol. 97, No. 4, 240-249 (2011). DOI: http://dx.doi.org/10.1002/bip.22013 https://doi.org/10.1002/bip.22013