DOI QR코드

DOI QR Code

Development of Survivability Analysis Program for Atmospheric Reentry

지구 재진입 파편 생존성 분석 프로그램 개발

  • Sim, Hyung-Seok (Launcher Mission Assurance Division, Korea Aerospace Research Institute) ;
  • Choi, Kyu-Sung (Launcher Mission Assurance Division, Korea Aerospace Research Institute) ;
  • Ko, Jeong-Hwan (Launcher Mission Assurance Division, Korea Aerospace Research Institute) ;
  • Chung, Eui-Seung (Launcher Mission Assurance Division, Korea Aerospace Research Institute)
  • Received : 2014.07.03
  • Accepted : 2015.01.13
  • Published : 2015.02.01

Abstract

A survivability-analysis program has been developed to analyze the ground collision risk of atmospheric reentry objects, such the upper stages of a launch vehicle or satellites, which move at or near the orbital velocity. The aero-thermodynamic load during the free fall, the temperature variation due to thermal load, and the phase shift after reaching the melting point are integrated into the 3 degree-of-freedom trajectory simulation of the reentry objects to analyze the size and weight of its debris impacting the ground. The analysis results of the present method for simple-shaped objects are compared with the data predicted by similar codes developed by NASA and ESA. Also, the analysis for actual reentry orbital objects has been performed, of which results are compared with the measurement data.

궤도 속도에 근접하거나 궤도운동을 하고 있는 발사체 상단의 지구 재진입에 따른 지상피해 분석에 이용하기 위하여 지구 재진입 물체의 생존성 분석 프로그램(SAPAR: Survivability Analysis Program for Atmospheric Reentry)을 개발하였다. 3자유도 파편 낙하시뮬레이션 과정에 파편이 낙하하는 도중에 받게 되는 공력 열하중, 열하중에 의한 파편의 온도변화, 녹는점에 도달한 후 물체의 상변화 여부 등을 포함하여 최종적으로 지상에 낙하하는 파편의 크기와 무게를 분석하였다. 개발된 코드의 검증을 위하여 단순한 형태의 파편에 대한 생존성 분석을 수행하여 미항공우주국(NASA)과 유럽우주국(ESA)의 코드 결과와 비교하였다. 또한 실제 재진입 파편에 대한 분석을 수행하여 측정된 결과와 비교하였다.

Keywords

References

  1. Ailor, W., Hallman, W., Steckel, G., and Weaver, M, "Analysis of Re-entered Debris and Implications for Survivability Modeling," In Proceedings of the Fourth European Conference on Space Debris, 2005, ESA SP-587.
  2. Anon. "PAM-D debris falls in Saudi Arabia," The Orbital Debris Quarterly News 6(2), 1, 2001.
  3. Anselmo, L., and Pardini, C., "Computational Methods for Reentry Trajectory and Risk Assessment," Advances in Space Research, 35 (2005), pp. 1343-1352 https://doi.org/10.1016/j.asr.2005.04.089
  4. Rochelle, W. C., Kinsey, R. E., Reid, E. A., Reynolds, R. C., and Johnson, N. L., "Spacecraft Orbital Debris Reentry Aerothermal Analysis," Proceedings of the Eighth Annual Thermal and Fluids Analysis Workshop: Spacecraft Analysis and Design p 10.1-10.14; UNITED STATES; 1997
  5. Dobarco-Otero, J., Smith, R.N., Marichalar, J.J., Opiela, J.N., Rochelle, and W.C., Johnson, N.L., "Upgrades to Object Reentry Survival Analysis Tool (ORSAT) for Spacecraft and Launch Vehicle Upper Stage Applications," 54th, International Astronautical Congress, Bremen, Germany. Sep 29-Oct 3, 2003.
  6. Lips, T., Fritsche, B., Koppenwallner, G., and Klinkrad, H., "Spacecraft Destruction during Re-entry - Latest Results and Development of the SCARAB Software System," Advances in Space Research, 34 (2004), pp. 1055-1060 https://doi.org/10.1016/j.asr.2003.01.012
  7. Ziniu, W., Ruifeng, H., Xi, Q., Xiang, W. and Zhe, W., "Space Debris Reentry Analysis Methods and Tools," Chinese Journal of Aeronautics, Vol. 24, 2011. pp 387-395 https://doi.org/10.1016/S1000-9361(11)60046-0
  8. Lips, T., Sartemann, V., Koppenwallner, G., Klinkrad, H., Alwes, D., Dobarco-Otero, J., Smith, R. N., Delaune, R.M., Rochelle, W.C., and Johnson N. L., "Comparison of ORSAT and SCARAB Reentry Survival Results," Proceedings of the 4th European Conference on Space Debris, Darmstadt, Germany, 2005.
  9. Jeong, S.W., Min, C.O., Lee, M.H., Lee, D.W., Cho, K.R., Bainum, Peter M., "Re-entry Survivability and On-Ground Risk Analysis of Low Earth Orbit Satellite," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 42, No. 2, 2014. pp 158-164 https://doi.org/10.5139/JKSAS.2014.42.2.158
  10. Choi, K.S., Ko, J.H., Sim, H.S., Roh, W.R., " Survivability and risk analysis method for reentry objects utilizing ASTOS(Aerospace trajectory optimization software," in Proceedings of 2011 KSAS Fall conference, 2011. pp 1480-1484
  11. Anderson, J.D., Hypersonic and High Temperature Gas Dynamics, McBraw-Hill, 1998.
  12. Sim, H.S., Ko, J.H., Choi, K.S., "Development of Survivability Analysis Program for Atmospheric Reentry," KARI-MDTTM-2010-004, Technical Memorandum, Korea Aerospace Research Institute, 2010.
  13. Detra, R. W., Kemp, N. H., Riddell, F. R., "Addendum to heat transfer to satellite vehicles reentering the atmosphere," Jet propulsion, Vol. 27, No. 12, 1957, pp. 1256-1257
  14. Dobarco-Otero, J., Smith, R.N., Bledsoe, K. J., Delaune, R., M., Rochelle, W.C., and Johnson, N.L., "The Object Reentry Survival Anslysis Tool(ORSAT)-Version 6.0 And Its Application To Spacecraft Entry," 56th International Astronautical Congress, Fukuoka, Japan. Oct. 17-21, 2005.
  15. Kelley, R. L., Rochelle, W.C., "Atmospheric Reentry of a Hydrazine Tank," NASA Wihte Paper, http://thebulletin.org/sites/default/files_legacy_files/NASA_White_Paper.pdf, 2014. 6. 27. revisited
  16. Cropp, L.O., "Analytical Methods used in Predicting the Re-entry Ablation of Spherical and Cylindrical Bodies," Sandia Corporation SC-RR-65-187, Sep 1965.
  17. White, F.M., Heat Transfer, Addison- Wesley Publishing company, 1984
  18. Rochelle, W.C., Kirk, B.S., Ting, B.C., Smith L.N., Smith R.N., Reid, E.A., Johnsol, N.L., Madden, C.B., "Modeling of Space Debris Reentry Survivability and Comparison of Analytical Methods," paper IAA-99-IAA.6.7.03, in Proceedings of 50th IAC, Amsterdam, Netherlands, 1999.

Cited by

  1. The Strain Corrections for Accuracy Improvement to Predict Large Deformation of Wings vol.44, pp.1, 2016, https://doi.org/10.5139/JKSAS.2016.44.1.1
  2. Design of a 1 × 2 Array Microstrip Antenna for Active Beam Compensation at X-band vol.15, pp.2, 2016, https://doi.org/10.12815/kits.2016.15.2.111