DOI QR코드

DOI QR Code

Separation of Gases ($H_2$, $N_2$, $CO_2$, $CH_4$) by PEBAX-NaY Zeolite Composite Membranes

PEBAX-NaY zeolite 복합막에 의한 기체($H_2$, $N_2$, $CO_2$, $CH_4$) 분리에 관한 연구

  • Received : 2015.01.12
  • Accepted : 2015.02.03
  • Published : 2015.02.28

Abstract

PEBAX[poly(ether-block-amide)]-NaY zeolite composite membrane was studied on the permeability of penetrant $H_2$, $N_2$, $CO_2$ and $CH_4$ and the selectivity. When the NaY zeolite contents of PEBAX-NaY zeolite membranes were increased, the permeability of $H_2$ was increased, but the permeability of $N_2$, $CH_4$ and $CO_2$ was decreased. By the addition of NaY zeolite into PEBAX, the gas selectivity for $H_2$, $N_2$ and $CO_2$ was decreased except the increase of selectivity of $H_2/N_2$. $CO_2/N_2$, $H_2/CO_2$ and Gas/$CH_4$. The highest selectivity among these gases was from $CO_2$. In particular, the gas selectivity for $CO_2$ was the greatest with a value of 12~156.

PEBAX[poly(ether-block-amide)]-NaY zeolite 복합막에 대한 $H_2$, $N_2$, $CO_2$, $CH_4$의 투과도와 선택도에 대하여 연구하였다. PEBAX-NaY zeolite 복합막에 대한 $H_2$, $N_2$, $CO_2$, $CH_4$ 투과도는 막 내의 NaY zeolite 함량이 증가할수록 $H_2$의 투과도는 증가하였고, $N_2$, $CO_2$, $CH_4$의 투과도는 감소하는 경향을 나타내었다. PEBAX-NaY zeolite 복합막 내의 NaY zeolite 함량이 증가함에 따라 $N_2$에 대한 $H_2$$CO_2$의 선택도, $CO_2$에 대한 $H_2$의 선택도, 그리고 $CH_4$에 대한 기체 선택도는 증가하였고, 그외의 $H_2$, $N_2$, $CO_2$에 대한 기체($H_2$, $N_2$, $CO_2$, $CH_4$)의 선택도는 감소하였다. 그리고 각 기체들에 대한 가장 높은 선택도는 $CO_2$인 경우에 얻어졌고, $H_2$, $N_2$, $CH_4$에 대한 $CO_2$의 선택도 값은 12~156이었다.

Keywords

References

  1. S. I. Semenova, "Polymer membranes for hydrocarbon separation and removal", J. Membr. Sci., 231, 189 (2004). https://doi.org/10.1016/j.memsci.2003.11.022
  2. A. Jonquieres, R. Clement, P. Lochon, J. Neel, M. Dresch, and B. Chretien, "Industrial state-the-art of pervaporation and vapor permeation in the western countries", J. Membr. Sci., 206, 87 (2002). https://doi.org/10.1016/S0376-7388(01)00768-2
  3. H. Strathmann, "Membrane separation processes: current relevance and future opportunities", AIChE. J., 47, 1077 (2001). https://doi.org/10.1002/aic.690470514
  4. R. W. Backer, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002). https://doi.org/10.1021/ie0108088
  5. T. K. Poddar and K. K. Sirkar, "A hybrid of vapor permeation and membrane based absorption-stripping for VOC removal and recovery from gaseous emissions", J. Membr. Sci., 132, 229 (1997). https://doi.org/10.1016/S0376-7388(97)00070-7
  6. R. W. Baker, J. G. Wijmans, and J. H. Kaschemekat, "The design of membrane vapor-gas separation system", J. Membr. Sci., 151, 55 (1998). https://doi.org/10.1016/S0376-7388(98)00248-8
  7. S. H. Lee, M. Z. Kim, C. H. Cho, and M. H. Han, "$CO_2$ permeation behavior of Pebax-2533 plate membranes prepared from 1-propanol/n-butanol mixed solvents", Membra. J., 23, 367 (2013).
  8. C. H. Hyung, C. D. Park, K. H. Kim, J. W. Rhim, T. S. Hwang, and H. K. Lee, "A study on the $SO_2/CO_2/N_2$ mixed gas separation using polyetherimide/ PEBAX/PEG composite hollow fiber membrane" Membr. J., 22, 404 (2012).
  9. R. S. Murali, A. F. Ismail, M. A. Rahman, and S. Sridhar, "Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations", Sep. Purif. Tech., 129, 1 (2014). https://doi.org/10.1016/j.seppur.2014.03.017
  10. H. B. Kim, M. W. Lee, W. K. Lee, and S. H. Lee, "Permeation properties of single gases ($N_2,\;O_2,\;SF_6,\;CH_4$) through PDMS and PEBAX membranes" Membr. J., 22, 201 (2012).
  11. L. Liu, A. Chakma, and X. Feng, "Propylene separation from nitrogen by poly(ether block amide) composite membranes", J. Membr. Sci., 279, 645 (2006). https://doi.org/10.1016/j.memsci.2005.12.058
  12. R. Xiaoling, R. Jizhong, L. Hui, and D. Maicun, "Permeation characteristics of light hydrocarbons through poly(amide-6-${\beta}$-ethylene oxide) multilayer composite membranes", Chin. J. Chem. Eng., 21, 232 (2013). https://doi.org/10.1016/S1004-9541(13)60462-0
  13. Q. Hu, E. Marand, S. Dhingra, D. Fritsch, J. Wen, and G. Wilkes, "Poly(amide-imide)/$TiO_2$ nano-composite gas separation membranes : fabrication and characterization", J. Membr. Sci., 135, 65 (1997). https://doi.org/10.1016/S0376-7388(97)00120-8
  14. Z. Gao, Y. Yue, and W. Li, "Application of zeolite-filled pervaporation membrane", Zeolite, 16, 70 (1996). https://doi.org/10.1016/0144-2449(95)00094-1
  15. R. Mashallah, K. Shahidi, and T. Mohammadi, "Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matric membranes", Int. J. Hydrogen Energy, 37, 19 (2012). https://doi.org/10.1016/j.ijhydene.2011.03.138
  16. C. Maxwell, "Treatise on Electricity and magnetism", Oxford University press, London (1873).