Decompression of the Sciatic Nerve Entrapment Caused by Post-Inflammatory Scarring

Byung-chul Son, M.D., Ph.D.,1,2 Deog-ryeong Kim, M.D.,3 Sin Soo Jeun, M.D., Ph.D.,1 Sang-won Lee, M.D., Ph.D.3
Department of Neurosurgery,1 Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
The Catholic Neuroscience Institute,1 College of Medicine, The Catholic University of Korea, Seoul, Korea
Department of Neurosurgery,1 St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea

A rare case of chronic pain of entrapment neuropathy of the sciatic nerve successfully relieved by surgical decompression is presented. A 71-year-old male suffered a chronic right buttock pain of duration of 7 years which radiating to the right distal leg and foot. His pain developed gradually over one year after undergoing drainage for the gluteal abscess seven years ago. A cramping buttock and intermittently radiating pain to his right foot on sitting, walking, and voiding did not respond to conventional treatment. An MRI suggested a post-inflammatory adhesion encroaching the proximal course of the sciatic nerve beneath the piriformis as it emerges from the sciatic notch. Upon exploration of the sciatic nerve, a fibrotic tendinous scar beneath the piriformis was found and released proximally to the sciatic notch. His chronic intractable pain was completely relieved within days after the decompression. However, thigh weakness and hypesthesia of the foot did not improve. This case suggest a need for of more prompt investigation and decompression of the chronic sciatic entrapment neuropathy which does not improve clinically or electrically over several months.

Key Words: Entrapment neuropathy · Neurolysis · Piriformis · Sciatic nerve.
beneath the gluteus muscle without deviating the gluteus maximus. After elevation of the subcutaneous flap over the proximal gluteal muscle along the course of the sciatic nerve, a fibrotic scar which was the consequence of the former drainage procedure done 7 years ago was found (Fig. 2A). With a transverse dissection between the gluteus maximus, the proximal sciatic nerve was found and followed. An irregularly fibrotic, tendinous band just beneath the piriformis muscle overlying the sciatic nerve was released while carefully avoiding an injury to severely compressed sciatic nerve (Fig. 2). The sciatic nerve was decompressed proximally to its exit from the sciatic notch and free passage of the finger was confirmed along the course of it. The obturator internus, gemelli, and quadratus femoris were visible. The posterior cutaneous nerve of the thigh (black arrow) and piriformis muscle (black arrowhead) were found and neurolysis was done. B: A schematic drawing of the exposure.

The patient was positioned prone with the affected side elevated slightly and the knee minimally flexed. The classic incision for proximal lesion of the sciatic nerve from the posterior inferior iliac spine to midline of the posterior thigh, curving lateral to the gluteal muscles was made. After deviding the skin and subcutaneous tissue, the inferior margin of the gluteus maximus and the long head of biceps femoris were sought. Just lateral and deep to the long head of the biceps femoris, the sciatic nerve was found within a fat pad. Subcutaneous dissection was carried proximally

Fig. 1. A physical photograph and magnetic resonance imaging showing the gluteal abscess in the right hip seven years ago. A: A photograph showing dimple-like postoperative scars in the patient's buttoc. B: A gadolinium-enhanced T1 coronal image shows an irregularly enhancing band-like lesion (arrow) encroaching the sciatic nerve (arrowheads).
one year postoperatively until his last follow-up at outpatient clinic. However, his long-standing thigh weakness and diffuse hypesthesia along distal leg and foot did not improve.

DISCUSSION

Anatomy of the sciatic nerve

Formed by the L4–S3 roots, the sciatic nerve is the largest nerve in the body. The sciatic nerve exits the greater sciatic foramen as distinct tibial and peroneal divisions, enclosed in a common nerve sheath. In the pelvis, the sciatic nerve may descend anterior to, above, or through the piriformis muscle. Variations of the sciatic nerve/piriformis are well known. In the distal thigh, the two divisions physically separate into tibial and common peroneal nerves. The sciatic nerve is the lifeline of the lower extremity. It provides knee flexion by innervation of the posterior thigh muscles and almost all sensory and motor functions below the knee.

The piriformis muscle divides the greater sciatic region into suprapiriformis and infrapiriformis regions. The inferior gluteal neurovascular bundle, the sciatic nerve, and the posterior cutaneous nerve of the thigh pass in the lateral part of the infrapiiformis region. The piriformis muscle connects the sacrum and the greater trochanter, its main function is an external rotator of the hip with the leg extended and abductor of the hip when the thigh is flexed.

Etiology of the sciatic nerve entrapment

Sciatic nerve irritation and compression can occur from pelvis to the distal thigh. The most common site is between the greater sciatic notch and the ischial tuberosity. Another site of sciatic nerve entrapment has been described due to the fibrous edge of the biceps femoris at the level of the ischial tuberosity in athletes. Sciatic nerve compression can occur due to scar (following surgery, trauma, infection, injection), mass (e.g., bony impingement, cement, tumor, abscess, hematoma, entrometrioma), fibrous band, or vascular leash. Dynamic factors such as leg crossing may also play a role in tethering the nerve. Direct injuries and stretch injuries to the sciatic nerve in the buttock could occur.

Controversial concept of piriformis syndrome

Far more controversial is the clinical entity of piriformis syndrome. Different theories exist to support the premise that piriformis muscle itself either compress or irritates the sciatic nerve. A widely held theory is that anatomical variations of the relationship of the sciatic nerve to the piriformis muscle predispose the sciatic nerve to entrapment by it. Some believe that the sciatic nerve may be vulnerable to the entrapment lesions because it passes through or posterior to the piriformis muscle. Others believe these normal variations are coincidental findings, and some postulated that piriformis spasm or degenerative changes in the piriformis muscle cause compression against the bony pelvis and epineural irritation.

Purist claim that an irritated nerve in the vicinity of the piriformis muscle is not proof of a cause-effect relationship. In addition, they prefer to avoid the lavel syndrome and specify the cause, for example, sciatic nerve compression by synovial bursitis or posttraumatic scarring, rather than invoke a nondescriptive term (e.g., piriformis syndrome). As a result, some believe that the piriformis syndrome is underdiagnosed, many, overdiagnosed. Regardless of its prevalence, the diagnosis of piriformis syndrome should only be made after excluding all other potential causes of sciatica.

Clinical manifestation

Sciatic nerve compression typically produces local buttck pain with radiating symptoms into the distribution of the sciatic nerve. Patients may complain of painful dyesthesias or paresthesias, or painless hypesthesias. Their symptoms may be worse with prolonged sitting, especially on hard surfaces (i.e., so-called wallet neuritis or hip pocket neuropathy). Patients may also note subtle weakness in the foot or toes, which may affect their gait. In more extreme cases, they may experience severe motor dysfunction in all muscles below the knee and hamstrings. Patients typically do not have back or hip symptoms.

Sciatic nerve lesions may produce typical sensory disturbance or motor weakness in the sciatic nerve distribution. In chronic cases, trophic changes may occur on the plantar aspect of the foot. Ankle and hamstring reflexes may be reduced in the affected limb, whereas the quadriceps reflex is preserved. Patients with sciatic nerve compression near the sciatic notch typically have localized pain between the posterior superior iliac spine and the greater trochanter. Frequently the diagnosis of piriformis syndrome is made without firm objective findings, and the diagnosis is largely a clinical one.

Provocative test that stretch the piriformis include forced hip internal rotation with the thigh extended; Freiberg sign, resistance to abduction and external rotation; Pace sign, voluntary adduction, flexion, internal rotation of the hip; positive Laségue sign. Hip external rotation may lessen pain.

Diagnostic studies

High resolution MRI can delineate the sciatic nerve and its relationship to the piriformis muscle. Increased signal intensity or an enlarged sciatic nerve visualized on MRI in the region of the piriformis muscle is not specific for piriformis syndrome and may be suggestive of other pathologies, including inflammatory conditions, sarcoidosis, and lymphoma, to name a few differential diagnoses. Asymmetry of the nerve compared with the contralateral side is helpful, but not specific, because bilateral, fairly symmetric imaging abnormalities may be seen in patients with bilateral sciatic or lumbosacral neuropathies. The interpretation of scans after piriformis injection should be done cautiously because the appearance of the piriformis and neighboring sciatic nerve may be altered following the procedure.
Electrical studies are helpful in establishing the diagnosis and the level of injury in sciatic neuropathy and they can help differentiate other lesion and prognosticate about the severity of the injury. In most cases of reported piriformis syndrome, electrodagnostic studies are normal, though some have found prolongation of the F response and H reflex latencies.

Injection of local anesthetic agent and steroids are frequently used for both diagnostic and therapeutic purposes. However, the literatures regarding nerve blocks is largely uncontrolled\(^1\). A negative effect of a single or series of sciatic nerve block is helpful in negating a diagnosis. A positive effect is still nonspecific and must be interpreted with caution\(^1\).

Treatment of sciatic entrapment neuropathy

Nonoperative measures including nonsteroidal anti-inflammatory agents and medication to treat neuropathic pain, a course of physical therapy to stretch the piriformis and reduce spasm is helpful in many cases. Some have advocated injection with botulinum toxin A in relieving piriformis spasm. Trigger point injections may be helpful also\(^1,2,4\).

Surgery should be performed for patients with findings consistent with a diagnosis of sciatic neuropathy who do not improve clinically or electrically over 4 to 6 months\(^1,2,4\). However, it was suggested that surgery should be performed as a last option in patients diagnosed with piriformis syndrome who have failed nonoperative therapy and who have had all other diagnoses excluded. Even with this preselection, surgery in piriformis syndrome was often unrewarding\(^1,2,4,12\).

For localized pathology near the sciatic notch, a muscle-splitting approach thorough limited skin incision may be possible. For a more extensive dissection of the sciatic nerve, the approach with a modification of the Henry exposure of the sciatic nerve is needed\(^9\). The glutus maximus can be detached from its insertion and reflected medially\(^1,2\). Neurolysis may include freeing fibrous bands or ligating enlarged veins. Some suggested intraoperative electrical studies are helpful in localizing the site of and determining the extent of neural injury, as well as prognosis on recovery\(^1,2,4\).

In our case, we first localized the sciatic nerve just distal to the inferior margin of the glutus maximus and followed its proximal course to sciatic notch. We found the dense adhesion scar resulting from previous drainage operation in the middle of the glutus maximus, and a transverse muscle-splitting approach was done to find an entrapped sciatic nerve without detaching the gluteus. An external neurolysis of the sciatic nerve was possible without much difficulty.

CONCLUSION

Sciatic nerve compression and entrapment can occur most commonly in the buttock level. Although compression of the sciatic nerve producing neurological symptoms and signs from mass lesion, scarring, and bony proliferation are well described, the report dealing surgical decompression of sciatic entrapment neuropathy is rare. Sciatic entrapment neuropathy caused by adhesion scar or inflammation around the sciatic notch should be decompressed surgically to avoid possible neurologic sequelae as shown in this case.

References