DOI QR코드

DOI QR Code

Effects of 915 MHz Radiofrequency Identification Electromagnetic Field Exposure on Neuronal Precursor Cells in the Dentate Gyrus of Adult Rat Brains

  • Kim, Hye Sun (Department of Neurosurgery, School of Medicine, Ajou University) ;
  • Lee, Yu Hee (Department of Neurosurgery, School of Medicine, Ajou University) ;
  • Lee, Yun-Sil (Division of Life Science and Pharmaceuticals, College of Pharmacy, Ewha Woman's University) ;
  • Choi, Hyung-Do (Department of Radio Technology Research, Electronics and Telecommunications Research Institute) ;
  • Kwon, Jong Hwa (Department of Radio Technology Research, Electronics and Telecommunications Research Institute) ;
  • Pack, Jeong-Ki (Department of Radio Sciences and Engineering, College of Engineering, Chungnam National University) ;
  • Kim, Nam (School of Electrical and Computer Engineering, Chungbuk National University) ;
  • Ahn, Young Hwan (Department of Neurosurgery, School of Medicine, Ajou University)
  • Received : 2015.05.26
  • Accepted : 2015.07.06
  • Published : 2015.07.31

Abstract

To explore the effects of radiofrequency electromagnetic field on the fate of neuronal cells, we investigated whether exposure to 915 MHz radiofrequency identification (RFID) caused morphological changes in neuronal cells in rat hippocampal dentate gyrus (DG). A reverberation chamber was used as a whole-body RFID exposure system. Rats were assigned to two groups: sham- and RFID-exposed groups. Rats in the RFID-exposed group were exposed to RFID at 4 W/kg specific absorption rate (SAR) for 8 hours daily, 5 days per week, for 2 weeks. Morphological evaluation of DG was performed using immunohistochemistry with doublecortin (DCX) as a neuronal precursor cell marker and neuronal nuclei (NeuN) as a mature neuronal cell marker. No significant morphological changes in DCX+ or NeuN+ cells in the DG of RFID-exposed rats were observed. These results suggest that RFID exposure induces no significant change in DCX+ neuronal precursor or NeuN+ neuronal cells in DG of rats.

Keywords

References

  1. M. Feychting, A. Ahlbom, and L. Kheifets, "EMF and health," Annual Review of Public Health, vol. 26, pp. 165-189, 2005. https://doi.org/10.1146/annurev.publhealth.26.021304.144445
  2. A. E. Pereda, "Electrical synapses and their functional interactions with chemical synapses," Nature Reviews Neuroscience, vol. 15, no. 4, pp. 250-263, 2014. https://doi.org/10.1038/nrn3708
  3. N. D. Volkow, D. Tomasi, G. J. Wang, P. Vaska, J. S. Fowler, F. Telang, D. Alexoff, J. Logan, and C. Wong, "Effects of cell phone radiofrequency signal exposure on brain glucose metabolism," JAMA, vol. 305, no. 8, pp. 808-813, 2011. https://doi.org/10.1001/jama.2011.186
  4. S. Xu, W. Ning, Z. Xu, S. Zhou, H. Chiang, and J. Luo, "Chronic exposure to GSM 1,800-MHz microwaves reduces excitatory synaptic activity in cultured hippocampal neurons," Neuroscience Letters, vol. 398, no. 3, pp. 253-257, 2006. https://doi.org/10.1016/j.neulet.2006.01.004
  5. D. N. Abrous, M. Koehl, and M. Le Moal, "Adult neurogenesis: from precursors to network and physiology," Physiological Reviews, vol. 85, no. 2, pp. 523-569, 2005. https://doi.org/10.1152/physrev.00055.2003
  6. Y. Yagita, K. Kitagawa, T. Sasaki, Y. Terasaki, K. Todo, E. Omura-Matsuoka, M. Matsumoto, and M. Hori, "Postischemic exercise decreases neurogenesis in the adult rat dentate gyrus," Neuroscience Letters, vol. 409, no. 1, pp. 24-29, 2006. https://doi.org/10.1016/j.neulet.2006.09.040
  7. T. H. Lee, C. H. Lee, I. H. Kim, B. C. Yan, J. H. Park, S. H. Kwon, O. K. Park, J. H. Ahn, J. H. Cho, M. H. Won, and S. K. Kim, "Effects of ADHD therapeutic agents, methylphenidate and atomoxetine, on hippocampal neurogenesis in the adolescent mouse dentate gyrus," Neuroscience Letters, vol. 524, no. 2, pp. 84-88, 2012. https://doi.org/10.1016/j.neulet.2012.07.029
  8. C. Utsugi, S. Miyazono, K. Osada, H. Sasajima, T. Noguchi, M. Matsuda, and M. Kashiwayanagi, "Hard-diet feeding recovers neurogenesis in the subventricular zone and olfactory functions of mice impaired by soft-diet feeding," PLoS One, vol. 9, no. 5, p. e97309, 2014. https://doi.org/10.1371/journal.pone.0097309
  9. M. Bergami, G. Masserdotti, S. G. Temprana, E. Motori, T. M. Eriksson, J. Gobel, S. M. Yang, K. Conzelmann, A. F. Schinder, M. Gotz, and B. Berninger, "A critical period for experience-dependent remodeling of adult-born neuron connectivity," Neuron, vol. 85, no. 4, pp. 710-717, 2015. https://doi.org/10.1016/j.neuron.2015.01.001
  10. J. Orendacova, E. Racekova, M. Orendac, M. Martoncikova, K. Saganova, K. Lievajova, H. Abdiova, J. Labun, and J. Galik, "Immunohistochemical study of postnatal neurogenesis after whole-body exposure to electromagnetic fields: evaluation of age- and dose-related changes in rats," Cellular and Molecular Neurobiology, vol. 29, no. 6-7, pp. 981-990, 2009. https://doi.org/10.1007/s10571-009-9385-3
  11. E. Odaci, O. Bas, and S. Kaplan, "Effects of prenatal exposure to a 900 MHz electromagnetic field on the dentate gyrus of rats: a stereological and histopathological study," Brain Research, vol. 1238, pp. 224-229, 2008. https://doi.org/10.1016/j.brainres.2008.08.013
  12. M. O. Kim, H. Jung, S. C. Kim, J. K. Park, and Y. K. Seo, "Electromagnetic fields and nanomagnetic particles increase the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells," International Journal of Molecular Medicine, vol. 35, no. 1, pp. 153-160, 2015. https://doi.org/10.3892/ijmm.2014.1978
  13. Y. Seong, J. Moon, and J. Kim, "Egr1 mediated the neuronal differentiation induced by extremely low-frequency electromagnetic fields," Life Sciences, vol. 102, no. 1, pp. 16-27, 2014. https://doi.org/10.1016/j.lfs.2014.02.022
  14. H. J. Kim, J. Jung, J. H. Park, J. H. Kim, K. N. Ko, and C. W. Kim, "Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells," Experimental Biology and Medicine, vol. 238, no. 8, pp. 923-931, 2013. https://doi.org/10.1177/1535370213497173
  15. J. E. Park, Y. K. Seo, H. H. Yoon, C. W. Kim, J. K. Park, and S. Jeon, "Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation," Neurochemistry International, vol. 62, no. 4, pp. 418-424, 2013. https://doi.org/10.1016/j.neuint.2013.02.002
  16. J. P. Shah, P. Midkiff, P. C. Brandt, and B. F. Sisken, "Growth and differentiation of PC6 cells: the effects of pulsed electromagnetic fields (PEMF)," Bioelectromagnetics, vol. 22, no. 4, pp. 267-271, 2001. https://doi.org/10.1002/bem.49
  17. M. Y. Macias, J. H. Battocletti, C. H. Sutton, F. A. Pintar, and D. J. Maiman, "Directed and enhanced neurite growth with pulsed magnetic field stimulation," Bioelectromagnetics, vol. 21, no. 4, pp. 272-286, 2000. https://doi.org/10.1002/(SICI)1521-186X(200005)21:4<272::AID-BEM4>3.0.CO;2-5
  18. G. Del Vecchio, A. Giuliani, M. Fernandez, P. Mesirca, F. Bersani, R. Pinto, L. Ardoino, G. A. Lovisolo, L. Giardino, and L. Calza, "Continuous exposure to 900 MHz GSM-modulated EMF alters morphological maturation of neural cells," Neuroscience Letters, vol. 455, no. 3, pp. 173-177, 2009. https://doi.org/10.1016/j.neulet.2009.03.061
  19. H. S. Kim, Y. J. Kim, Y. H. Lee, Y. S. Lee, H. D. Choi, J. K. Pack, N. Kim, and Y. H. Ahn, "Effect of whole-body exposure to the 848.5 MHz code division multiple access (CDMA) electromagnetic field on adult neurogenesis in the young, healthy rat brain," International Journal of Radiation Biology, vol. 91, no. 4, pp. 354-359, 2015. https://doi.org/10.3109/09553002.2014.995382
  20. H. S. Kim, M. J. Paik, Y. J. Kim, G. Lee, Y. S. Lee, H. D. Choi, B. C. Kim, J. K. Pack, N. Kim, and Y. H. Ahn, "Effects of whole-body exposure to 915 MHz RFID on secretory functions of the thyroid system in rats," Bioelectromagnetics, vol. 34, no. 7, pp. 521-529, 2013. https://doi.org/10.1002/bem.21797
  21. K. B. Jung, T. H. Kim, J. L. Kim, H. J. Doh, Y. C. Chung, J. H. Choi, and J. K. Pack, "Development and validation of reverberation-chamber type whole-body exposure system for mobile-phone frequency," Electromagnetic Biology and Medicine, vol. 27, no. 1, pp. 73-82, 2008. https://doi.org/10.1080/15368370701878895
  22. H. S. Kim, Y. S. An, M. J. Paik, Y. S. Lee, H. D. Choi, B. C. Kim, J. K. Pack, N. Kim, and Y. H. Ahn, "The effects of exposure to 915 MHz radiofrequency identification on cerebral glucose metabolism in rat: a [F-18] FDG micro-PET study," International Journal of Radiation Biology, vol. 89, no. 9, pp. 750-755, 2013. https://doi.org/10.3109/09553002.2013.791756
  23. J. C. Fiala and K. M. Harris, "Extending unbiased stereology of brain ultrastructure to three-dimensional volumes," Journal of the American Medical Informatics Association, vol. 8, no. 1, pp. 1-16, 2001. https://doi.org/10.1136/jamia.2001.0080001
  24. M. J. West, L. Slomianka, and H. J. Gundersen, "Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator," Anatomical Record, vol. 231, no. 4, pp. 482-497, 1991. https://doi.org/10.1002/ar.1092310411
  25. O. F. Sonmez, E. Odaci, O. Bas, and S. Kaplan, "Purkinje cell number decreases in the adult female rat cerebellum following exposure to 900 MHz electromagnetic field," Brain Research, vol. 1356, pp. 95-101, 2010. https://doi.org/10.1016/j.brainres.2010.07.103
  26. L. G. Salford, A. E. Brun, J. L. Eberhardt, L. Malmgren, and B. R. Persson, "Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones," Environmental Health Perspectives, vol. 111, no. 7, pp. 881-883, 2003. https://doi.org/10.1289/ehp.6039
  27. H. Masuda, A. Ushiyama, M. Takahashi, J. Wang, O. Fujiwara, T. Hikage, T. Nojima, K. Fujita, M. Kudo, and C. Ohkubo, "Effects of 915 MHz electromagnetic-field radiation in TEM cell on the blood-brain barrier and neurons in the rat brain," Radiation Research, vol. 172, no. 1, pp. 66-73, 2009. https://doi.org/10.1667/RR1542.1
  28. T. Kumlin, H. Iivonen, P. Miettinen, A. Juvonen, T. van Groen, L. Puranen, R. Pitkaaho, J. Juutilainen, and H. Tanila, "Mobile phone radiation and the developing brain: behavioral and morphological effects in juvenile rats," Radiation Research, vol. 168, no. 4, pp. 471-479, 2007. https://doi.org/10.1667/RR1002.1
  29. T. H. Kim, T. Q. Huang, J. J. Jang, M. H. Kim, H. J. Kim, J. S. Lee, J. K. Pack, J. S. Seo, and W. Y. Park, "Local exposure of 849 MHz and 1,763 MHz radiofrequency radiation to mouse heads does not induce cell death or cell proliferation in brain," Experimental and Molecular Medicine, vol. 40, no. 3, pp. 294-303, 2008. https://doi.org/10.3858/emm.2008.40.3.294
  30. B. Cuccurazzu, L. Leone, M. V. Podda, R. Piacentini, E. Riccardi, C. Ripoli, G. B. Azzena, and C. Grassi, "Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice," Experimental Neurology, vol. 226, no. 1, pp. 173-182, 2010. https://doi.org/10.1016/j.expneurol.2010.08.022
  31. M. S. Rao and A. K. Shetty, "Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus," European Journal of Neuroscience, vol. 19, no. 2, pp. 234-246, 2004. https://doi.org/10.1111/j.0953-816X.2003.03123.x
  32. B. Weber and L. F. Barros, "The astrocyte: powerhouse and recycling center," Cold Spring Harbor Perspectives in Biology, 2015. http://dx.doi.org/10.1101/cshperspect.a020396.
  33. G. Gittins and P. J. Harrison, "Neuronal density, size and shape in the human anterior cingulate cortex: a comparison of Nissl and NeuN staining," Brain Research Bulletin, vol. 63, no. 2, pp. 155-160, 2004. https://doi.org/10.1016/j.brainresbull.2004.02.005
  34. R. J. Mullen, C. R. Buck, and A. M. Smith, "NeuN, a neuronal specific nuclear protein in vertebrates," Development, vol. 116, no. 1, pp. 201-211, 1992.

Cited by

  1. Empirical study of stirring conditions on emulating rayleigh fading channels in a reverberation chamber vol.59, pp.7, 2017, https://doi.org/10.1002/mop.30591
  2. Design of a ceiling-mounted reader antenna to maximize the readable volume coverage ratio for an indoor UHF RFID application vol.59, pp.9, 2017, https://doi.org/10.1002/mop.30699