DOI QR코드

DOI QR Code

Reproducibility of the sella turcica landmark in three dimensions using a sella turcica-specific reference system

  • Pittayapat, Pisha (OIC, OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven) ;
  • Jacobs, Reinhilde (OIC, OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven) ;
  • Odri, Guillaume A. (Service de Chirurgie Orthopedique et Traumatologique, Centre Hospitalier Regional d'Orleans) ;
  • Vasconcelos, Karla De Faria (Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas) ;
  • Willems, Guy (Orthodontics, Department of Oral Health Sciences, KU Leuven and Dentistry, University Hospitals Leuven, University of Leuven) ;
  • Olszewski, Raphael (Department of Oral and Maxillofacial Surgery, Cliniques Universitaires Saint Luc, Universite Catholique de Louvain)
  • Received : 2014.08.04
  • Accepted : 2014.11.03
  • Published : 2015.03.31

Abstract

Purpose: This study was performed to assess the reproducibility of identifying the sella turcica landmark in a three-dimensional (3D) model by using a new sella-specific landmark reference system. Materials and Methods: Thirty-two cone-beam computed tomographic scans (3D Accuitomo$^{(R)}$ 170, J. Morita, Kyoto, Japan) were retrospectively collected. The 3D data were exported into the Digital Imaging and Communications in Medicine standard and then imported into the Maxilim$^{(R)}$ software (Medicim NV, Sint-Niklaas, Belgium) to create 3D surface models. Five observers identified four osseous landmarks in order to create the reference frame and then identified two sella landmarks. The x, y, and z coordinates of each landmark were exported. The observations were repeated after four weeks. Statistical analysis was performed using the multiple paired t-test with Bonferroni correction (intraobserver precision: p<0.005, interobserver precision: p<0.0011). Results: The intraobserver mean precision of all landmarks was <1 mm. Significant differences were found when comparing the intraobserver precision of each observer (p<0.005). For the sella landmarks, the intraobserver mean precision ranged from $0.43{\pm}0.34mm$ to $0.51{\pm}0.46mm$. The intraobserver reproducibility was generally good. The overall interobserver mean precision was <1 mm. Significant differences between each pair of observers for all anatomical landmarks were found (p<0.0011). The interobserver reproducibility of sella landmarks was good, with >50% precision in locating the landmark within 1 mm. Conclusion: A newly developed reference system offers high precision and reproducibility for sella turcica identification in a 3D model without being based on two-dimensional images derived from 3D data.

Keywords

References

  1. Alkofide EA. Sella turcica morphology and dimensions in cleft subjects. Cleft Palate Craniofac J 2008; 45: 647-53. https://doi.org/10.1597/07-058.1
  2. Axelsson S, Storhaug K, Kjaer I. Post-natal size and morphology of the sella turcica. Longitudinal cephalometric standards for Norwegians between 6 and 21 years of age. Eur J Orthod 2004; 26: 597-604. https://doi.org/10.1093/ejo/26.6.597
  3. Brock-Jacobsen MT, Pallisgaard C, Kjaer I. The morphology of the sella turcica in monozygotic twins. Twin Res Hum Genet 2009; 12: 598-604. https://doi.org/10.1375/twin.12.6.598
  4. Kjaer I. Sella turcica morphology and the pituitary gland - a new contribution to craniofacial diagnostics based on histology and neuroradiology. Eur J Orthod 2015; 37: 28-36. https://doi.org/10.1093/ejo/cjs091
  5. Teal JS. Radiology of the adult sella turcica. Bull Los Angeles Neurol Soc 1977; 42: 111-74.
  6. Alkofide EA. The shape and size of the sella turcica in skeletal Class I, Class II, and Class III Saudi subjects. Eur J Orthod 2007; 29: 457-63. https://doi.org/10.1093/ejo/cjm049
  7. Andredaki M, Koumantanou A, Dorotheou D, Halazonetis DJ. A cephalometric morphometric study of the sella turcica. Eur J Orthod 2007; 29: 449-56. https://doi.org/10.1093/ejo/cjm048
  8. Hofrath H. Bedeutung der Rontgenfern und Abstands Aufnahme fur die Diagnostik der Kieferanomalien. Fortschr Orthod 1931; 1: 231-58.
  9. Broadbent BH. A new x-ray technique and its application to orthodontia. Angle Orthod 1931; 1: 45-66.
  10. Pauwels R, Beinsberger J, Collaert B, Theodorakou C, Rogers J, Walker A, et al. Effective dose range for dental cone beam computed tomography scanners. Eur J Radiol 2012; 81: 267-71. https://doi.org/10.1016/j.ejrad.2010.11.028
  11. Mah JK, Huang JC, Choo H. Practical applications of conebeam computed tomography in orthodontics. J Am Dent Assoc 2010; 141: 7S-13S. https://doi.org/10.14219/jada.archive.2010.0361
  12. Kau CH, Richmond S, Palomo JM, Hans MG. Three-dimensional cone beam computerized tomography in orthodontics. J Orthod 2005; 32: 282-93. https://doi.org/10.1179/146531205225021285
  13. van Vlijmen OJ, Kuijpers MA, Berge SJ, Schols JG, Maal TJ, Breuning H, et al. Evidence supporting the use of cone-beam computed tomography in orthodontics. J Am Dent Assoc 2012; 143: 241-52. https://doi.org/10.14219/jada.archive.2012.0148
  14. Swennen GR, Schutyser F, Barth EL, De Groeve P, De Mey A. A new method of 3-D cephalometry Part I: the anatomic Cartesian 3-D reference system. J Craniofac Surg 2006; 17: 314-25. https://doi.org/10.1097/00001665-200603000-00019
  15. Olszewski R, Cosnard G, Macq B, Mahy P, Reychler H. 3D CT-based cephalometric analysis: 3D cephalometric theoretical concept and software. Neuroradiology 2006; 48: 853-62. https://doi.org/10.1007/s00234-006-0140-x
  16. Periago DR, Scarfe WC, Moshiri M, Scheetz JP, Silveira AM, Farman AG. Linear accuracy and reliability of cone beam CT derived 3-dimensional images constructed using an orthodontic volumetric rendering program. Angle Orthod 2008; 78: 387-95. https://doi.org/10.2319/122106-52.1
  17. Brown AA, Scarfe WC, Scheetz JP, Silveira AM, Farman AG. Linear accuracy of cone beam CT derived 3D images. Angle Orthod 2009; 79: 150-7. https://doi.org/10.2319/122407-599.1
  18. Olszewski R, Tanesy O, Cosnard G, Zech F, Reychler H. Reproducibility of osseous landmarks used for computed tomography based three-dimensional cephalometric analyses. J Craniomaxillofac Surg 2010; 38: 214-21. https://doi.org/10.1016/j.jcms.2009.05.005
  19. Olszewski R, Frison L, Wisniewski M, Denis JM, Vynckier S, Cosnard G, et al. Reproducibility of three-dimensional cephalometric landmarks in cone-beam and low-dose computed tomography. Clin Oral Investig 2013; 17: 285-92. https://doi.org/10.1007/s00784-012-0688-2
  20. Pittayapat P, Limchaichana-Bolstad N, Willems G, Jacobs R. Three-dimensional cephalometric analysis in orthodontics: a systematic review. Orthod Craniofac Res 2014; 17: 69-91. https://doi.org/10.1111/ocr.12034
  21. Schlicher W, Nielsen I, Huang JC, Maki K, Hatcher DC, Miller AJ. Consistency and precision of landmark identification in three-dimensional cone beam computed tomography scans. Eur J Orthod 2012; 34: 263-75. https://doi.org/10.1093/ejo/cjq144
  22. Chien PC, Parks ET, Eraso F, Hartsfield JK, Roberts WE, Ofner S. Comparison of reliability in anatomical landmark identification using two-dimensional digital cephalometrics and three-dimensional cone beam computed tomography in vivo. Dentomaxillofac Radiol 2009; 38: 262-73. https://doi.org/10.1259/dmfr/81889955
  23. de Oliveira AE, Cevidanes LH, Phillips C, Motta A, Burke B, Tyndall D. Observer reliability of three-dimensional cephalometric landmark identification on cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107: 256-65. https://doi.org/10.1016/j.tripleo.2008.05.039
  24. Meyer-Marcotty P, Reuther T, Stellzig-Eisenhauer A. Bridging of the sella turcica in skeletal Class III subjects. Eur J Orthod 2010; 32: 148-53. https://doi.org/10.1093/ejo/cjp081
  25. Cederberg RA, Benson BW, Nunn M, English JD. Calcification of the interclinoid and petroclinoid ligaments of sella turcica: a radiographic study of the prevalence. Orthod Craniofac Res 2003; 6: 227-32. https://doi.org/10.1034/j.1600-0544.2003.00243.x
  26. Bergland RM, Ray BS, Torack RM. Anatomical variations in the pituitary gland and adjacent structures in 225 human autopsy cases. J Neurosurg 1968; 28: 93-9. https://doi.org/10.3171/jns.1968.28.2.0093
  27. Durao AR, Pittayapat P, Rockenbach MI, Olszewski R, Ng S, Ferreira AP, et al. Validity of 2D lateral cephalometry in orthodontics: a systematic review. Prog Orthod 2013; 14: 31. https://doi.org/10.1186/2196-1042-14-31
  28. Muramatsu A, Nawa H, Kimura M. Reproducibility of maxillofacial anatomic landmarks on 3-dimensional computed tomographic images determined with the 95% confidence ellipse method. Angle Orthod 2008; 78: 396-402. https://doi.org/10.2319/040207-166.1
  29. Hassan B, Nijkamp P, Verheij H, Tairie J, Vink C, van der Stelt P, et al. Precision of identifying cephalometric landmarks with cone beam computed tomography in vivo. Eur J Orthod 2013; 35: 38-44. https://doi.org/10.1093/ejo/cjr050

Cited by

  1. Comparison of linear and angular measurements in CBCT scans using 2D and 3D rendering software vol.30, pp.4, 2015, https://doi.org/10.1080/13102818.2016.1174077