DOI QR코드

DOI QR Code

Bacterial diversity of the Marine Sponge, Halichondria panicea by ARDRA and DGGE

ARDRA와 DGGE를 이용한 Halichondria panicea 해면의 공생세균 다양성

  • Park, Jin-Sook (Department of Biological Science and Biotechnology, Hannam University)
  • 박진숙 (한남대학교 생명시스템과학과)
  • Received : 2015.12.23
  • Accepted : 2015.12.24
  • Published : 2015.12.31

Abstract

Culture-dependent ARDRA and culture-independent DGGE were employed to investigate the bacterial community associated with the marine sponge Halichondria panicea collected from Jeju Island. A total of 120 bacterial strains associated with the sponge were cultivated using modified Zobell and Marine agar media. PCR amplicons of the 16S rRNA gene from the bacterial strains were digested with the restriction enzymes HaeIII and MspI, and then assigned into different groups according to their restriction patterns. The 16S rRNA gene sequences derived from ARDRA patterns showed more than 96% similarities compared with known bacterial species, and the isolates belonged to four classes, Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, and Firmicutes, of which Alphaproteobacteria was dominant. DGGE fingerprinting of 16S rRNA genes amplified from the sponge-derived total gDNA showed 14 DGGE bands, and their sequences showed 100% similarities compared with the sequences available in GenBank. The sequences derived from DGGE bands revealed high similarity with the uncultured bacterial clones. DGGE revealed that bacterial community consisted of seven classes, including Alphaproteobacteria, Gammaproteobacteria, Acidobacteria, Actinobacteira, Bacteroidetes, Cyanobacteria, and Chloroflexi. According to both the ARDRA and DGGE methods, three classes, Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes, were commonly found in H. panicea. However, overall bacterial community in the sponge differed depending on the analysis methods. Sponge showed more various bacterial community structures in culture independent method than in culture-dependent method.

제주도에서 채집한 해양 해면 Halichondria panicea의 공생세균 군집구조를 배양에 의한 ARDRA와 비배양에 의한 DGGE 분석 방법에 의하여 조사하였다. 16S rRNA gene-ARDRA 분석을 위해 변형된 Zobell 배지와 Marine agar를 이용하여 120균주를 선별하고 제한효소, HaeIII와 MspI을 사용하여 ARDRA type을 구분하였다. ARDRA type으로부터 유래한 16S rRNA gene 염기서열 분석 결과, 알려진 세균 종과 96% 이상의 유사도를 나타내었으며 Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, Firmicutes 등 3문 4강이 관찰되었다. 그 중 Alphaproteobacteria가 우점하였다. 같은 해면, H. panicea의 DGGE 분석을 위해 total genomic DNA로부터 16S rRNA gene를 증폭하여 DGGE fingerprinting을 수행한 결과 14개의 밴드가 관찰되었다. 각 밴드의 16S rRNA gene 염기서열은 알려진 세균의 염기서열과 100%의 유사성을 나타내었으며 대부분의 염기서열은 uncultured bacteria에 속하였다. DGGE 분석으로부터 미생물의 군집은 Alphaproteobacteria, Gammaproteobacteria, Acidobacteria, Actinobacteira, Bacteroidetes, Cyanobacteria, Chloroflexi 등 6문 7강으로 나타났다. ARDRA와 DGGE 방법에 의해 Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes가 공통적으로 발견되었으나 전체적인 공생세균의 군집구조는 분석방법에 따라 차이를 나타내었다. 배양에 의한 방법보다 비배양 방법에서 더 다양한 세균군집구조를 나타내었다.

Keywords

References

  1. Abe, T., Sahin, F.P., Akiyama, K., Naito, T., Kishigami, M., Miyamoto, K., Sakakibara, Y., and Uemura, D. 2012. Construction of a metagenomic library for the marine sponge Halichondria okadai. Biosci. Biotechnol. Biochem. 76, 633-639. https://doi.org/10.1271/bbb.110533
  2. Althoff, K., Schutt, C., Steffen, R., Batel, R., and Mueller, W.E. 1998. Evidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: harbor also for putatively toxic bacteria?. Mar. Biol. 130, 529-536. https://doi.org/10.1007/s002270050273
  3. Barthel, D. and Wolfrath, B. 1989. Tissue sloughing in the sponge Halichondria panicea: a fouling organism prevents being fouled. Ocecologia 78, 357-360. https://doi.org/10.1007/BF00379109
  4. Hentschel, U., Usher, K.M., and Talor, M.W. 2006 Marine sponges as microbial fermenters. FEMS Microbiol. Ecol. 55, 167-177. https://doi.org/10.1111/j.1574-6941.2005.00046.x
  5. Imhoff, J.F. and Stohr, R. 2003. Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea, pp. 35-57. In Muller, W.E.G. (eds.), Sponges (Porifera). Springer-Verlag Berlin Heidelberg, New York, USA.
  6. Jackson, S.A., Kennedy, J., Morrissey, J.P., O'Gara, F., and Dobson, A.W. 2012. Pyrosequencing reveals diverse and distinct sponge-specific microbial communities in sponges from a single geographical location in irish waters. Microb. Ecol. 64, 105-116. https://doi.org/10.1007/s00248-011-0002-x
  7. Jeong, I.H. and Park, J.S. 2012a. Phylogenetic analysis of bacterial diversity in the marine sponge, Asteropus simplex, collected from Jeju Island. Korean J. Microbiol. 48, 275-283. https://doi.org/10.7845/kjm.2012.064
  8. Jeong, J.B. and Park, J.S. 2012b. Seasonal differences of bacterial communities associated with the marine sponge, Hymeniacidon sinapium. Korean J. Microbiol. 48, 262-269. https://doi.org/10.7845/kjm.2012.063
  9. Kennedy, J., Flemer, B., Jackson, S.A., Morrissey, J.P., O'Gara, F., and Dobson, A.D. 2014. Evidence of a putative deep sea specific microbiome in marine sponges. PLoS 9, e91092. https://doi.org/10.1371/journal.pone.0091092
  10. Li, Z., He, L., and Miao, X. 2007. Cultivable bacterial community from South China sea sponge as revealed by DGGE fingerprinting and 16S rDNA phylogenetic analysis. Curr. Microbiol. 55, 465-472. https://doi.org/10.1007/s00284-007-9035-2
  11. Nagle, D.G., McClatchey, W.C., and Gerwick, W.H. 1992. New glycosphingolipids from the marine sponge Halichondria panicea. J. Nat. Prod. 55, 1013-1017. https://doi.org/10.1021/np50085a032
  12. Perovic, S., Wichels, A., Schutt, C., Gerdts, G., Pahler, S., Steffen, R., and Muller, W.E. 1998. Neuroactive compounds produced by bacteria from the marine sponge Halichondria panicea: activation of the neuronal NMDA receptor. Environ. Toxicol. Pharmacol. 6, 125-133. https://doi.org/10.1016/S1382-6689(98)00028-3
  13. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  14. Schmitt, S., Tsai, P., Bell, J., Fromont, J., Ilan, M., Lindquist, N., Perez, T., Rodrigo, A., Schupp, P.J., Vacelet, J., et al. 2012. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J. 6, 564-576. https://doi.org/10.1038/ismej.2011.116
  15. Schneemann, I., Kajahn, I., Ohlendorf, B., Zinecker, H., Erhard, A., Nagel, K., Wiese, J., and Imhoff, J.F. 2010a. Mayamycin, a cytotoxic polyketide from a Streptomyces strain isolated from the marine sponge Halichondria panicea. J. Nat. Prod. 73, 1309-1312. https://doi.org/10.1021/np100135b
  16. Schneemann, I., Nagel, K., Kajahn, I., Labes, A., Wiese, J., and Imhoff, J.F. 2010b. Comprehensive investigation of marine Actinobacteria associated with the sponge Halichondria panicea. Appl. Environ. Microbiol. 76, 3702-3714. https://doi.org/10.1128/AEM.00780-10
  17. Schneemann, I., Ohlendorf, B., Zinecker, H., Nagel, K., Wiese, J., and Imhoff, J.F. 2010c. Nocapyrones A-D, ${\gamma}$-pyrones from a Nocardiopsis strain isolated from the marine sponge Halichondria panicea. J. Nat. Prod. 73, 1444-1447. https://doi.org/10.1021/np100312f
  18. Sipkema, D., Schippers, K., Maalcke, W.J., Yang, Y., Salim, S., and Blanch, H.W. 2011. Multiple approaches to enhance the cultivability of bacteria associated with the marine sponge Haliclona (gellius) sp. Appl. Environ. Microbiol. 77, 2130-2140. https://doi.org/10.1128/AEM.01203-10
  19. Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599. https://doi.org/10.1093/molbev/msm092
  20. Taylor, M.W., Radax, R., Steger, D., and Wagner, M. 2007. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71, 295-347. https://doi.org/10.1128/MMBR.00040-06
  21. Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  22. Webster, N.S., Negri, A.P., Munro, M.M., and Battershill, C.N. 2004. Diverse microbial communities inhabit Antarctic sponges. Environ. Microbiol. 6, 288-300. https://doi.org/10.1111/j.1462-2920.2004.00570.x
  23. Wichels, A., Wurtz, S., Dopke, H., Schutt, C., and Gerdts, G. 2006. Bacterial diversity in the breadcrumb sponge Halichondria panicea (Pallas). FEMS Microbiol. Ecol. 56, 102-118. https://doi.org/10.1111/j.1574-6941.2006.00067.x