DOI QR코드

DOI QR Code

온실 구조용 파이프의 부식속도 검토

Corrosion Rate of Structural Pipes for Greenhouse

  • 윤성욱 (경상대학교 농업생명과학연구원) ;
  • 최만권 (국립원예특작과학원 시설원예연구소) ;
  • 이시영 (농촌진흥청 농업공학부 에너지환경공학과) ;
  • 문성동 (강원대학교 산업공학과) ;
  • 윤용철 (경상대학교 지역환경기반공학과(농업생명과학연구원))
  • Yun, Sung-Wook (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Choi, Man Kwon (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Lee, Si Young (Dept. of Agricultural Engineering, National Academy of Agricultural Science, RDA) ;
  • Moon, Sung Dong (Dept. of Industrial & Management Eng. Kangwon National University) ;
  • Yoon, Yong Cheol (Dept. of Agricultural Eng., Gyeongsang National Univ.(Institute of Agriculture and Life Science))
  • 투고 : 2015.05.20
  • 심사 : 2015.12.22
  • 발행 : 2015.12.31

초록

간척지 내 토양은 염분농도 및 함수비가 일반지역에 비해 상당히 높기 때문에 간척지에 매입된 온실의 부재는 높은 부식 환경에 노출된다. 염해의 환경에서는 파이프 골조로 이루어진 온실의 기초 및 기초와 이어진 파이프에 부식을 촉진시키기 때문에 이에 대한 보수/보강기술개발 및 효율적인 유지 관리가 필요하다. 본 연구에서는 염해의 위험성이 높은 간척지에 적합한 온실의 유지관리, 보수/보강에 대한 기준을 마련하기 위한 기초자료로서 토양염분환경에서 온실부재의 부식속도를 측정하였다. 각 온실파이프는 염분농도가 0%, 0.1%, 0.3% 및 0.5%인 토양 및 수중환경에 관찰기간동안(480일) 노출시켜 부식속도를 측정하였으며, 그 결과 육안으로도 염분 농도에 따른 부식정도의 차이가 뚜렷하게 관찰되었으며, 시험편의 표면이 검은색의 부식현상과 함께 비교적 고르게 부식되는 균일부식의 형태를 나타내었다. 논토양의 경우 염분농도 0, 0.1, 0.3, 0.5%에서 각각 0.008, 0.027, 0.036, $0.043mm{\cdot}yr^{-1}$로 염분농도가 증가할수록 부식속도가 뚜렷하게 증가하는 경향을 나타내었고 밭토양의 경우, 염분농도 0, 0.1, 0.3, 0.5%에서 각각 0.0002, 0.039, 0.040, $0.039mm{\cdot}yr^{-1}$의 부식속도를 나타내었다. 상대적으로 세립질이 많은 논토양에서 부식속도가 더 높은 것으로 나타났으며, 이는 입경이 작고 고르게 분포하는 토양에서 부식속도가 높은 일반적인 특성이 그대로 반영된 것으로 판단되었다. 간척지의 경우 토양의 입자의 세립정도는 일반 내륙지역의 농경지 토양보다 높을 것으로 예상되기 때문에 파이프 부식에 대한 철저한 대비가 있어야 할 것으로 판단되었다.

Because soils in reclaimed lands nearby coastal areas have much higher salinity and moisture content than soils in inland area, parts of greenhouses embedded in such soils are exposed to highly corrosive environments. Owing to the accelerated corrosion of galvanized steel pipes for substrucrture and structure of greenhouses in saline environments, repair and reinforcement technologies and efficient maintenance and management for the construction materials in such facilities are required. In this study, we measured the corrosion rates of the parts used for greenhouse construction that are exposed to the saline environment to obtain a basic database for the establishment of maintenance and reinforcement standards for greenhouse construction in reclaimed lands with soils with high salinity. All the test pipes were exposed to soil and water environments with 0, 0.1, 0.3, and 0.5% salinity during the observation period of 480 days. At the end of the observation period, salinity-dependent differences of corrosion rate between black-surface corrosion and relatively regular corrosion were clearly manifested in a visual assessment. For the soils in rice paddies, the corrosion growth rate increased with salinity (0.008, 0.027, 0.036, and $0.043mm{\cdot}yr^{-1}$ at 0, 0.1, 0.3, and 0.5% salinity, respectively). The results for the soils in agricultural fields are 0.0002, 0.039, 0.040, and $0.039mm{\cdot}yr^{-1}$ at 0, 0.1, 0.3, and 0.5% salinity, respectively. The higher corrosion rate of rice-paddy soil was associated with the relatively high proportion of fine particles in it, reflecting the general tendency of soils with evenly distributed fine particles. Hence, it was concluded that thorough measures should be taken to counteract pipe corrosion, given that besides high salinity, the soils in reclaimed lands are expected to have a higher proportion of fine particles than those in inland rice paddies and agricultural fields.

키워드

참고문헌

  1. Choi, M.K., S.W., Yun, H.T., Kim, S.Y., Lee, and Y.C. Yoon. 2014a. Field survey on the maintenance status og greenhouse in Korea. Protected Hort. Plant Fac. 23(2):148-157 (in Korean). https://doi.org/10.12791/KSBEC.2014.23.2.148
  2. Choi, M.K., S.W., Yun, H.T., Kim, S.Y., Lee, and Y.C. Yoon. 2014b. Current status on the greenhouse foundation. J. Agric. & Life Sci. 48(3):251-260 (in Korean). https://doi.org/10.14397/jals.2014.48.3.251
  3. Kim, M.G., S.W. Nam, W.M. Suh, Y.C. Yoon, S.G. Lee, and H.W. Lee. 2000. Agricultural structural engineering. ed. Hyangmunsa. Seoul, Korea. p. 54 (in Korean).
  4. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2012. Approach to Establish a comprehensive plan for Agricultural land use of reclaimed land. Sejong, Korea. p. 4 (in Korean).
  5. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2014a. Greenhouse status for the vegetable grown in facilities and the vegetable productions in 2013. Sejong, Korea. p. 61-65 (in Korean).
  6. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2014b. Cultivation status of floricultural crop in 2013. Sejong, Korea. p. 10-12 (in Korean).
  7. Nam, S.W., and Y.S. Kim. 2009. Actual state of structures and environmental control facilities for tomato greenhouses in Chungnam region. Jour. Agri. Sci. Chungam Nat'l Univ. 36(1):73-85 (in Korea).
  8. Nam, S.W., and I.H. Yu. 2000. A field survey on the structures and maintenance ststus of pipe framed greenhouse. Journal of the Korean Society of Agricultural Engineer. 42(4):106-114 (in Korean).
  9. Nam, S.W., I.H. Yu., and J.W. Kim. 2001. Technology development of repair, reinforcement and maintenance us of pipe framed greenhouses. ed. Ministry of agriculture and Forestry, Gwacheon, Korea p. 26-102 (in Korean).