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Introduction

Gastric cancer (GC), is a kind of digestive cancer 
developing from the lining of the stomach (http://www.
cancer.gov/cancertopics/types/stomach). GC is often 
asymptomatic or nonspecific symptoms in its early stages 
(Leung et al., 2008). However, by the time symptoms 
occur, GC has commonly reached the advanced stage and 
may have also metastasized. More than 60% of cases are 
caused by infection with Helicobacter pylori (Gonzalez et 
al., 2013). The incidence of GC has occurred the 4th and 
the mortality of GC ranked the second among all tumor 
diseases worldwide (Orditura et al., 2014). The 5-year 
survival rates are disappointingly less than 10% globally 
for the reason that most patients have reached advanced 
stage (Orditura et al., 2014). GC has posed a great threat 
to human health all over the world.

An increasing number of studies have focused on 
the prevention and diagnosis of GC. Some traditional 
tumor markers are usually used in diagnosing and staging 
GC progress, such as carbohydrate antigen and cancer 
embryo antigen (Carpelan-Holmstrom et al., 2001; 
Takahashi et al., 2003). Besides, miRNAs, including 
miR-1, miR-20a, miR-27a, miR-34 and miR-423-5p, are 
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 Background: We aimed to discover potential gene biomarkers for gastric cancer (GC) diagnosis. Materials 
and Methods: Genechips of 10 GC tissues and 10 gastric mucosa (GM, para-carcinoma tissue, normal control) 
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up-regulated. The most significantly enriched GO-BP term was revealed to be mitotic cell cycle and the most 
significantly enriched pathway was cell cycle. The intersection analysis showed that most significant DEGs were 
cyclin B1 (CCNB1) and cyclin B2 (CCNB2). The sensitivities and specificities of CCNB1 and CCNB2 were both 
high (p<0.0001). Areas under the ROC curve for CCNB1 and CCNB2 were both greater than 0.9 (p<0.0001). 
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and development of GC and these genes may be potential biomarkers for diagnosis and prognosis of GC. 
Keywords: Gastric cancer - differentially expressed genes - diagnosis - biomarkers

RESEARCH ARTICLE

Identification of Biomarkers for Diagnosis of Gastric Cancer 
by Bioinformatics 
Da-Guang Wang1, Guang Chen2*, Xiao-Yu Wen3, Dan Wang4, Zhi-Hua Cheng2, 
Si-Qiao Sun2

identified as biomarkers for GC detection and indicate 
tumor progression stages (Liu et al., 2011). In addition, 
cluster of differentiation 44 is used as a cell surface 
marker to identify GC initiating cells (Takaishi et al., 
2009). Moreover, the protein expression of epidermal 
growth factor receptor-2, which is associated with serosal 
invasion and lymph node metastasis, is an important 
independent prognostic indicator in GC (Yonemura et al., 
1991). Furthermore, after treated with bevacizumab, the 
prognosis of patients with advanced GC can be predict by 
plasma vascular endothelial growth factor-A and tumor 
neuropilin-1, which are strong candidate biomarkers (Van 
Cutsem et al., 2012). Although tremendous efforts have 
been made to discover biomarkers for GC diagnosis, the 
present knowledge seems to be insufficient.

In this paper, we generated genechips of 10 GC tissues 
and 10 gastric mucosa (GM, para-carcinoma tissue) tissues 
using an exon array of Affymetrix containing 30000 
genes. Differentially expressed genes (DEGs) between 
GC and matched normal control were identified for 
hierarchical clustering analysis and functional analysis. 
Furthermore, the effects of selected biomarker candidates 
in distinguishing GC from normal control were detected 
by receiver operating characteristics (ROC) analysis. 
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We aimed to discover the potential biomarkers for GC 
diagnosis.

Materials and Methods

Patients
The study was performed in our hospital between 

February 2014 and April 2014. A total of 10 people 
histology diagnosed as GC aged 42-71 (mean age 
57.8 ± 6.3 years) were undergoing surgery to remove 
tumors. These patients included 7 males and 3 females. 
All the patients were treated without radiotherapy or 
chemotherapy. GM tissue, more than 5 cm far from the 
edge of tumor, was selected and used as normal control 
in each sample.

RNA isolation and genechip hybridization
Total RNA from GC and normal control samples was 

isolated using TRIzol reagent (Invitrogen, CA, USA) 
according to the manufacturer’s instructions. RNA 
purity was determined using an ultraviolet and visible 
spectrophotometer (UNIC, Shanghai, China). Samples 
with RNA purity between 1.8-2.2 were used for genechip 
hybridization and scanning. Labeling, hybridization and 
staining of these samples were performed according to the 
Eukaryotic Target Preparation protocol in the Affymetrix 
Technical Manual (701021 rev. 4, Affymetrix Santa Clara, 
CA, USA). In summary, 1 μg of purified total RNA was 
used in the synthesis of cDNA and the cDNA was purified 
using the Genechips Sample Cleanup Module (Affymetrix 
Santa Clara, CA, USA). The purified cDNA was amplified 
to produce biotin labeled cRNA using BioArray HighYield 
RNA transcript labeling kit (T7, Enzo Life Sciences, 
Farmingdale, USA). Labeled cRNA was fragmented and 
hybridized to GeneChip Human Gene 2.0 ST according to 
the manufacturer’s protocol (Affymetrix Santa Clara, CA, 
USA). The hybridized genechips were washed and stained 
for antibody amplification stain. Then, the genechips were 
scanned using Gene array Scanner 3000 7G (Affymetrix 
Santa Clara, CA, USA). 

Data preprocessing and screening of DEGs
GeneChip® Operating Software (Affymetrix Santa 

Clara, CA, USA) was used to gather signal value. 
Normalization algorithms were used to adjust sample 
signals by minimizing the effects of variation caused 
by non-biological factors. Quantile normalization was 
performed by the robust multiarray average (Irizarry et 
al., 2003) algorithm with application of Affy package 
in R statistical software program (Bolstad et al., 2003). 
Gene expression values of samples were log2-transformed 
and median-centered for further analysis. If multiple 
probes corresponded to a same gene, the mean value was 
calculated as the expression value of this gene. The Limma 
package (Smyth, 2004) in R language was used to screen 
DEGs. The DEGs with |log2 fold change (FC)| ≥1.0 and 
p value<0.05 were considered to be significant.

Hierarchical clustering analysis of DEGs
To generate an overview of the gene expression 

profile, we used hierarchical clustering analysis, which 

produces a unique set of nested categories or clusters 
by sequentially pairing variables, clusters, or variables 
and clusters i(BRIDGES JR, 1966). The gene expression 
profiles of the selected DEGs were performed hierarchical 
clustering analysis based on Euclidean distance using the 
“pheatmap” package in R language (Team, 2012) and then 
the heat map was generated.

Gene Ontology (GO) functional and pathway enrichment 
analysis of DEGs

GO functional analysis is a commonly used approach 
for functional studies of genomic or transcriptomic data 
(Consortium, 2004). GO categories include molecular 
function (MF), biological process (BP), and cellular 
component (CC). Kyoto Encyclopedia of Genes and 
Genomes (KEGG) is a knowledge base which is used 
for systematic analysis of enzymatic pathways, gene 
functions, and linking genomic information with higher 
order functional information (Kanehisa and Goto, 2000). 
Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) (Da Wei Huang and Lempicki, 2008) 
provides exploratory visualization tools that promote 
discovery through functional classification, biochemical 
pathway maps, and conserve protein domain architectures 
(Dennis et al., 2003). In order to analyze the DEGs in 
function level, we performed GO-BP and KEGG pathway 
enrichment analysis for DEGs by DAVID. The p-value less 
than 0.05 was chosen as cut-off criterion. DEGs enriched 
in the most significant GO terms and pathways were 
intersection analyzed to selected biomarker candidates.

ROC analysis of biomarker candidates
A ROC graph is a technique for visualizing, organizing 

and selecting classifiers based on their performance 
(Fawcett, 2006). A diagnostic test was firstly performed 
in order to estimate the diagnostic value of candidate 
biomarkers in GC. First, the 10 couples of samples were 
diagnosed to be GC or no-GC according to histological 
examination. Then, the 10 couples of genechips were 
divided into cancer group and normal control group 
according to the expression value of candidate biomarkers, 
which was used as a test threshold. Sensitivity (true 
positive rate) and specificity (true negative rate) of 
each biomarker in this diagnostic test were calculated. 
Finally, corresponding ROC curves were obtained by 
plotting the sensitivity, against the 1- specificity using 
the Medcalc statistical software (MedCalc Software, 
Mariakerke, Belgium). Area under the ROC curve (AUC) 
was calculated to estimate the accuracy of this diagnostic 
test. A test with AUC bigger than 0.9 gets high accuracy, 
0.7-0.9, moderate accuracy and 0.5-0.7, low accuracy. 

Results 

Screening of DEGs and hierarchical clustering analysis  
According to the cut-off criteria of p value<0.05 

and |log2 FC| ≥1.0, a total of 956 DEGs were obtained, 
including 60 down-regulated and 896 up-regulated DEGs. 

The heat map of hierarchical clustering analysis for 
the DEGs was showed in Figure 1. It was obvious to see 
that the expressions of DEGs between GC and normal 
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Figure 1. Hierarchical Clustering of DEGs. Abscissa 
axis: 10 couples of tissue samples, where “C” stands for gastric 
cancer samples, “N” stands for the normal control. Vertical 
axis: DEGs, where red color, up-regulated DEGs; green color, 
down-regulated DEGs

Figure 2. GO-BP Enrichment Analysis for DEGs. 
Abscissa axis: the value of -Log2P. Vertical axis: the top 
15 GO-BP terms. -Log2P: - log2 transformed of p-value 

Figure 3. KEGG Pathway Enrichment Analysis for 
DEGs. Abscissa axis: the value of -Log2P. Vertical axis: the top 
15 pathways. -Log2P:-log2 transformed of the p value

Figure 4. ROC Curve for CCNB1 and CCNB2. Abscissa 
axis: 1- specificity; vertical axis: sensitivity

Table 1. DEGs Enriched in Mitotic Cell Cycle or Cell Cycle
                                                         DEGs   p value

Mitotic cell cycle term KIF23, PRC1, KNTC1, TTK, AURKA, PTTG1, KIF2C, SEH1L, OIP5, MTBP,  2.30E-25
 CDCA2, PSMD3, NUP37, CCNA2, ASPM, CDCA3, CDC7, CDC6, KIF11,
  SGOL1, KIF15, TPX2, NUSAP1, PBK, CDK2, INHBA, MAD2L1, PSME1,
 SPAG5, PSMA5, PSMA4, C14ORF106, PSMA3, BUB1B, CCDC99, BLM,
 NEK3, TIPIN, ANLN, CHEK1, CEP55, SPC25, TUBB, NCAPH, PSMB1, NCAPG, 
 PSMB3, PSMB2, CDC123, BUB1, FBXO5, UBE2D1, ZWILCH, HELLS, ERCC6L,
 PINX1, YEATS4, TXNL4B, NUF2, KIF18A, CENPF, CDC20, NDC80, CENPE,
 CDKN3, SUGT1, SMC2, CCNB1, PSMD14, CCNB2, NOLC1, PLK1, PSMD10, 
 C13ORF34, PES1
Cell cycle pathway YWHAZ, TTK, PRKDC, CHEK1, SFN, PTTG1, CHEK2, CCNE2, ORC6L, BUB1, 7.15E-09
 CCNA2, TFDP1, CDC7, CDC6, YWHAB, TP53, CDC20, YWHAE, MCM4, CDK2,
 MCM5, ORC1L, MCM6, CCNB1, CCNB2, MAD2L1, PLK1, BUB1B

controls were significantly different and most DEGs were 
up-regulated.

GO-BP and pathway enrichment analysis
The top 15 GO terms enriched by DEGs in GO-BP 

category were listed in Figure 2. Terms related to cell cycle 
got obvious statistical significance. The most enriched GO 
term was mitotic cell cycle. The top 15 KEGG pathways 
were showed in Figure 3. The most enriched pathway was 
cell cycle. DEGs in mitotic cell cycle and cell cycle were 

listed in Table 1. The intersection analysis showed that 14 
DEGs were involved in both mitotic cell cycle and cell 
cycle (Table 2). The most significant DEGs were cyclin 
B1 (CCNB1) and cyclin B2 (CCNB2) with the FC value 
of 3.92 and 3.76, respectively. 

ROC analysis
The sensitivities of both CCNB1 and CCNB2 were 

100% and the specificities of both these two DEGs were 
90% (p<0.0001). AUCs for CCNB1 and CCNB2 were 
0.940 and 0.950, respectively (p<0.0001).

Discussion

GC is estimated to be one of the most common and 
frequent malignant tumor of the digestive system. Cancer-
related morbidity of GC ranks the second after lung cancer 
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in China (Yang, 2006). In recent study, bioinformatics 
method has been used to predict the potential microRNA 
biomarkers for early detection of GC (Liu et al., 2012). 
In our work, we used bioinformatics approach to screen 
the potential gene biomarkers for GC diagnosis. Our 
results suggested that CCNB1 and CCNB2 were the 
most significant biomarker candidates. They were both 
involved in mitotic cell cycle GO-BP term and cell cycle 
pathway. ROC analysis showed that the sensitivities 
and specificities of CCNB1 and CCNB2 in diagnostic 
tests were high (p<0.0001) and AUCs for CCNB1 and 
CCNB2 were both greater than 0.9, which indicated that 
this diagnostic tests got high accuracy.

CCNB1 and CCNB2 are members of cyclin B family, 
which are critical for the cells checking into or out of M 
phase in the cell cycle (Ford and Pardee, 1999; Zhou et 
al., 2002). CCNB1 is the best studied and characterized 
member of the cyclin B family (Yuan et al., 2005). It is a 
regulatory protein involved in mitosis and predominantly 
expressed during G2/M phase (Chow et al., 2003). Our 
function analysis showed that CCNB1 was involved in the 
GO-BP term and KEGG pathway related to the cell cycle 
of GC. It is known that lacking of regulation in the cell 
cycle is one of the hallmarks of cancer. The overexpression 
of CCNB1 can result in uncontrolled cell growth through 
cell cycle in cancer cells. High expression level of CCNB1 
has been detected in variety of cancers, including breast 
cancer (Kawamoto et al., 1997), colorectal cancer (Wang 
et al., 1997), prostate cancer (Mashal et al., 1996) and oral 
cancer (Kushner et al., 1999), as well as GC (Yasuda et al., 
2002). It corresponded with our result that CCNB1 was 
3.92 FC in GC compared with normal control. In addition, 
the suppression of CCNB1 by huanglian treatment can 
inhibit tumor cell growth in GC through retention of 
cells in G2 (Li et al., 2000). Furthermore, CCNB1 may 
be also involved in the genesis of GC, the overexpression 
of CCNB1 may play important roles in human gastric 
carcinogenesis (Kim, 2007). Thus, CCNB1 may be a 
critical target in the progression of GC.

Research also shows that the overexpression of CCNB1 
predominantly occurs in the early stage of GC (Yasuda 
et al., 2002). It has been confirmed that high expression 

levels of CCNB1 usually occur before tumor cells get 
immortalization [22]. Therefore, high level of CCNB1 
may be used as a biomarker to reveal the progression of 
GC in early stage. Previous research indicates aberrantly 
expressed CCNB1 in tumors and premalignant lesions 
should be further explored as diagnostic markers (Suzuki 
et al., 2005). Our results also showed that diagnosis test 
that used CCNB1 expression value as a test threshold 
got high sensitivity and specificity. This means that 
CCNB1 expression value maybe have the potential to 
be a biomarker in the diagnosis of GC. Moreover, high 
levels of CCNB1 also indicate lymph node metastasis 
and poor prognosis in GC (Begnami et al., 2010). Thus, 
CCNB1 may be a potential biomarker in the diagnosis 
and prognosis of GC.

Similar to CCNB1, CCNB2 is an essential component 
of the cell cycle regulatory machinery, too. The expression 
of CCNB2 carrying a mutation at arginine 32 arrests HeLa 
cells in a pseudo mitotic state (Gallant and Nigg, 1992). 
Furthermore, overexpression of CCNB2 alters the spindle 
checkpoint, which results into chromosomal instability 
(Sarafan-Vasseur et al., 2002). The progression of GC 
also intimately connects with cell cycle. Cancer represents 
a dysregulation of the cell cycle such as overexpress 
cyclins to undergo unregulated cell growth (Schwartz 
and Shah, 2005). The loss of cell cycle inhibitor can 
lead to lymph node metastasis of GC (Kim et al., 2000). 
Moreover, present evidences show that cell cycle arrest 
can inhibit cell growth and cell proliferation of GC (Lin et 
al., 2006; Otsubo et al., 2008), and G2/M cell cycle arrest 
is observed associated with a marked decreased cyclin B 
(Lin et al., 2006). Accordingly, CCNB2 may take part in 
the progression of GC through cell cycle. Although the 
present evidences of direct association between CCNB2 
and GC progression are rare, CCNB2 may be another key 
regulator in GC development. At last, CCNB2 has been 
identified as a biomarker for the diagnosis of other cancers, 
such as lung cancer (Hofmann et al., 2004), colorectal 
cancer (Park et al., 2007) and  cervical cancer (Garcia et 
al., 2013). These evidences suggest that CCNB2 may be 
a potential biomarker for diagnosis of GC.

In summary, CCNB1 and CCNB2, which were 
involved in cell cycle, played significant roles in the 
progression and development of GC. Our study proposes 
these genes to be potential biomarkers for diagnosis and 
prognosis of GC. However, further studies are necessary 
for verifying the clinical applications of these genes as 
biological markers for GC diagnosis.
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