DOI QR코드

DOI QR Code

Learning Wind Speed Forecast Model based on Numeric Prediction Algorithm

수치 예측 알고리즘 기반의 풍속 예보 모델 학습

  • Kim, Se-Young (Dept. of Computer Engineering, Pusan National University) ;
  • Kim, Jeong-Min (Dept. of Computer Engineering, Pusan National University) ;
  • Ryu, Kwang-Ryel (Dept. of Computer Engineering, Pusan National University)
  • 김세영 (부산대학교 전자전기컴퓨터공학과) ;
  • 김정민 (부산대학교 전자전기컴퓨터공학과) ;
  • 류광렬 (부산대학교 전자전기컴퓨터공학과)
  • Received : 2014.10.18
  • Accepted : 2015.02.23
  • Published : 2015.03.31

Abstract

Technologies of wind power generation for development of alternative energy technology have been accumulated over the past 20 years. Wind power generation is environmentally friendly and economical because it uses the wind blowing in nature as energy resource. In order to operate wind power generation efficiently, it is necessary to accurately predict wind speed changing every moment in nature. It is important not only averagely how well to predict wind speed but also to minimize the largest absolute error between real value and prediction value of wind speed. In terms of generation operating plan, minimizing the largest absolute error plays an important role for building flexible generation operating plan because the difference between predicting power and real power causes economic loss. In this paper, we propose a method of wind speed prediction using numeric prediction algorithm-based wind speed forecast model made to analyze the wind speed forecast given by the Meteorological Administration and pattern value for considering seasonal property of wind speed as well as changing trend of past wind speed. The wind speed forecast given by the Meteorological Administration is the forecast in respect to comparatively wide area including wind generation farm. But it contributes considerably to make accuracy of wind speed prediction high. Also, the experimental results demonstrate that as the rate of wind is analyzed in more detail, the greater accuracy will be obtained.

대체 에너지 기술 개발을 위해 지난 20년 동안 풍력 발전에 관련한 기술들이 축적되어왔다. 풍력 발전은 자연적으로 부는 바람을 에너지원으로 사용하므로 환경 친화적이며 경제적이다. 이러한 풍력 발전의 효율적인 운영을 위해서는 시시각각 변하는 자연 바람의 세기를 정확도 높게 예측할 수 있어야 한다. 풍속을 평균적으로 얼마나 정확하게 잘 예측하는지도 중요하지만 실제 값과 예측 값의 절대 오차의 최댓값을 최소화시키는 것 또한 중요하다. 발전 운영 계획 측면에서 예측 풍속을 통한 예측 발전량과 실제 발전량의 차이는 경제적 손실을 가져오는 원인이 되므로 유연한 운영 계획을 세우기 위해 최대 오차가 중요한 역할을 한다. 본 논문에서는 풍속 예측 방법으로 과거 풍속 변화 추세뿐만 아니라 기상청 예보와 시기적인 풍속의 특성을 고려하기 위한 경향 값을 반영하여 수치 예측 알고리즘으로 학습한 풍속 예보 모델을 제안한다. 기상청 예보는 풍력 발전 단지를 포함하는 비교적 넓은 지역의 풍속을 예보하지만 풍속을 예측하고자 하는 국소지점에 대한 풍속 예측의 정확도를 높이는데 상당히 기여한다. 또한 풍속 변화 추세는 긴 시간동안 관측한 풍속을 세세하게 반영할수록 풍속 예측의 정확도를 높인다.

Keywords

References

  1. Y. K. Wu, and J. S. Hong, "A literature review of wind forecasting technology in the world," Proceedings of the IEEE conference on Power Tech, Lausanne, pp. 504-509, July. 2007.
  2. W. Y. Chang, "A literature Review of Wind Forecasting Methods," Journal of Power and Energy Engineering, vol. 2, no. 4, pp. 161-168, April. 2014. https://doi.org/10.4236/jpee.2014.24023
  3. E. Erdem, and J. Shi, "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, vol. 88, no. 4, pp. 1405-1414, April. 2011. https://doi.org/10.1016/j.apenergy.2010.10.031
  4. M. Milligan, M. Schwartz, and Y. Wan, "Statistical Wind Power Forecasting models: results for U.S. Wind Farms", National Renewable Energy Laboratory, Golden, Colorado. May. 2003, NREL/CP-500-33956 (Preprint)
  5. M. Monfared, H. Rastegar, and H. M. Kojabadi, "A new strategy for wind speed forecasting using artificial intelligent methods," Renewably Energy, vol. 34, no. 3, pp. 845-848, Mar. 2009 https://doi.org/10.1016/j.renene.2008.04.017
  6. Z. Guo, J. Wu, H. Lu, and J. Wang, "A case study on a hybrid wind speed forecasting method using BP neural network," Knowledge-based systems, vol. 24, no. 7, pp. 1048-1056, Oct. 2011.
  7. M. Ross, R. Hidalgo, C. Abbey, and G. Joos, "Energy storage system scheduling for an isolated microgrid," IET Renew. Power Gener., vol. 5, no. 2, pp. 117-123, Mar. 2011 https://doi.org/10.1049/iet-rpg.2009.0204
  8. S. Russell, and P. Norvig, "Artificial Intelligence : A Modern Approach Third Edition," Pearson Education, pp737-738, 2010.
  9. C. G. Atkeson, A. W. Moore, and S. Schaal, "Locally weighted learning for control," Lazy learning. Springer Netherlands, pp. 75-113, 1997.
  10. J. R. Quinlan, "Learning with continuous classes," 5th Australian Joint Conference on Artificial Intelligence, pp. 343-348, 1992.
  11. Y. Wang, and I. H. Witten, "Induction of model trees for predicting continuous classes," Working paper 96/23, Hamilton, New Zealand: University of Waikato, Department of Computer Science, 1996.
  12. R. Kohavi, and G. H. John, "Wrappers for feature subset selection," Artificial Intelligence, vol. 97, no. 1-2, pp. 273-324, Dec. 1997. https://doi.org/10.1016/S0004-3702(97)00043-X
  13. I. Guyon, and A. Elisseeff, "An Introduction to Variable and Feature Selection," The Journal of Machine Learning Research vol. 3, pp. 1157-1182, Jan. 2003