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Ligand Based HQSAR Analysis of CRTh2 Antagonists

Sathya Babu and Thirumurthy Madhavan†

Abstract

CRTh2 receptor is an important mediator of the inflammatory effects and act as beneficial target for the treatment of

asthma, COPD, allergic rhinitis and atopic dermatitis. In the present work, Hologram QSAR studies were conducted on

a series of 50 training set CRTh2 antagonists (2-(2-(benzylthio)-1H-benzo[d]imidazol-1-yl acetic acids). The best HQSAR

model was obtained using atoms, bonds, connections and donor/acceptor as fragment distinction parameter using hologram

length 257 and 6 components with fragment size of minimum 7 and maximum 10. Significant cross-validated correlation

coefficient (q2=0.786) and non cross-validated correlation coefficients (r2=0. 954) were obtained. The model was then used

to evaluate the 15 external test compounds which are not included in the training set and the predicted values were in

good agreement with the experimental results (r2pred=0.739). Contribution map show that presence of C ring and its

substituents makes big contributions for activities. The HQSAR model and analysis from the contribution map could be

useful for further design of novel structurally related CRTh2 antagonists.
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1. Introduction

Prostaglandin D2 (PGD2), a major metabolite of ara-

chidonic acid is produced in high quantities by mast

cells, particularly during IgE-dependent allergic

responses[1-5]. PGD2 exhibit its biological responses by

activating two seven transmembrane (7TM) G-protein

coupled receptors (GPCRs), the classical DP1 receptor

and chemoattractant receptor-homologous molecule

expressed on T-helper 2 cells (CRTh2 also known as

DP2) receptor[1-6]. CRTh2 is selectively expressed by

Th2 cells, eosinophils and basophils and mediates

chemotactic activation of these cells in response to pros-

taglandin D2 (PGD2)[1-7]. The interaction between

immunologically activated mast cells and Th2 lym-

phocytes plays a key role in the pathogenesis of allergic

disorders, and recent evidence suggests that CRTH2

plays a dominant role in mediating this interaction[2] and

act as an important mediator in allergic reactions,

including asthma, atopic dermatitis and allergic rhini-

tis[7-9]. There is also evidence that genetic alterations of

CRTh2 are linked to increased risk of allergy or

asthma[10]. It is well established that antagonizing selec-

tively the CRTh2 receptor could be useful in the treat-

ment of asthma and other inflammatory disease[1,2,6,7].

Hologram Quantitative Structure Activity Relation-

ship (HQSAR) is the novel 2D fragment-based QSAR

method that employs specialized molecular finger-

prints[11,12] and eliminates the need for 3D structure,

molecular alignment and conformational search[13,14]. In

HQSAR, each molecule in the training set is divided

into several structural fragments, which are arranged to

form a molecular hologram, assigned by a cyclic redun-

dancy check (CRC) algorithm. In addition, HQSAR

models interpret positive and negative contributions

based on various atoms and structural units. Although

HQSAR uses two dimensional information of a mole-

cule, it also utilizes some three dimensional information

such as chirality and molecular hybridization[15]. With

HQSAR technique we can easily and rapidly generate

QSAR models for both small and large data set with

high predictive value compared to other QSAR mod-

els[11]. The limitation is that it could not make biological

activity predictions accurately to molecules lacking

fragments or structural units included in the training set

which are used to set up the model. In the present study,

HQSAR has been employed to study the activity of 65
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CRTh2 antagonists. Many HQSAR models were gen-

erated with different combinations of parameters and

based on statistical values of the model, the best model

was selected and its contribution map was also ana-

lyzed. We also identified the important features of the

compounds for improved activity. We hope that our

models and analysis will be helpful for future design of

novel and structurally related CRTh2 antagonists. 

2. Materials and Methods

2.1. Data Set

The data set of CRTh2 antagonist reported by Pothier

et al.[1] was used in this study. This includes a series of

65 compounds comprising of 2-(2-(benzylthio)-1H-

benzo[d]imidazol-1-yl acetic acids derivatives. The 65

compounds were segregated into a training set (50 com-

pounds) and test set (15 compounds). The test set mol-

ecules were selected manually in order to cover all

ranges of biological activity from the dataset. The given

inhibitory concentration (IC50) values were changed to

minus logarithmic scale value (pIC50) using the formula.

pIC50 = log (IC50)

The structures and biological activities of all com-

pounds including both training set and test set mole-

cules is shown in Table 1. The HQSAR modeling

analysis, calculations and visualization were performed

using the molecular modeling package SYBYL-X 2.1.

Table 1. Structures and biological activities (pIC50) of CRTh2 inhibitors

General template

a) Compound 1-17

 Compound n Y Z  pIC50 values

1 2 O Phenyl 6.229

2 2 O 2-Naphthyl 5.602

3 2 O 1-Naphthyl 5.699

4 3 O Phenyl 6.105

5 4 O Phenyl 5.854

6 2 CH2 Phenyl 6.323

7 1 CH2 Phenyl 6.055

8 0 CH2 Phenyl 6.411

9 3 NH Phenyl 5.570

10 2 NH Phenyl 5.114

11 4 CH2 Methyl 5.867

12 3 CH2 Methyl 5.907

13 2 CH2 Methyl 5.625

14 1 CH2 COOEt 4.943

15 2 CH2 COOEt 5.356

16 3 CH2 COOEt 5.627

17 4 CH2 COOEt 5.996
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Table 1. Continued

b) Compound 18-46

Compound
Substituent R at

 pIC50 values
C(2) C(3) C(4) C(5)

18 H H Cl H 6.796

19 H Cl H H 6.731

20 Cl H H H 6.432

21 H H OMe H 6.678

22 H OMe H H 7.143

23 OMe H H H 5.959

24 H H Me H 6.658

25 H Me H H 6.979

26 Me H H H 6.092

27 H H Br H 6.658

28 H Br H H 6.432

29 Br H H H 6.237

30 H H CO2Me H 4.975

31 H CO2Me H H 6.347

32 CO2Me H H H 6.284

33 H Cl Cl H 6.420

34 Cl H H Cl 6.328

35 OMe H H Me 5.921

36 OMe H H Cl 6.131

37 OMe H H OMe 5.796

38 OMe H H CO2Me 7.538

39 Br CO2Me H H 5.538

40 H CO2Me Br H 6.009

41 H Br H CO2Me 6.482

42 Br H H CO2Me 7.347

43 OMe H H CO2iPr 6.824

44 OMe H H C(O)Me 8.097

45 H H H C(O)Me 6.638

46 OMe H H  CH(OH)Me 5.657
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The structures of the data set were sketched and mini-

mized individually by using Powell’s conjugate gradient

method and Tripos force field.

2.2. HQSAR

HQSAR is a two dimensional computational tech-

nique that uses a fragmenting approaches that relates

substructural components of compounds to their biolog-

ical activity. In this method, each molecule is divided

into a series of unique structural fragments that are

counted in the bins of a fixed length array to form the

molecular hologram[16]. The parameters such as holo-

gram length, fragment size and fragment distinction

affect the HQSAR model. The hologram length (HL)

Table 1. Continued

c) Compound 46-54

 Compound
Substituent R at

pIC50 values
C(4) C(5) C(6)

47 F H H 8.301

48 H F H 8.699

49 H H F 7.347

50 H NO2 H 8.699

51 H CF3 H 8.523

52 H MeSO2 H 7.387

53 H Me(O)C H 7.482

54 H H(O)C H 8.398

d) Compound 55-65

Compound R1 R2  pIC50 values

55 Et Me 8.398

56 NPr Me 8.301

57 NBu Me 8.046

58 Me Ph 8.770

59 Me NHEt 7.796

60 Me NHBu 7.796

61 Me NHBn 7.229

62 Me NEt2 7.143

63 Me NBnEt 6.305

64 Me Morpholino 6.971

65 Me Indolin-1-yl 8.523
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determines the number of bins in the hologram into

which the fragments are hashed. The optimal HQSAR

model was derived from screening through the default

HL values, which were set of prime numbers ranging

from 53 to 401 to avoid fragment collisions. Fragment

size controls the minimum and maximum length of the

fragments to be included on the hologram fingerprint

with the default as 4 and 7 respectively. Molecular frag-

ment generation utilizes the following fragment distinc-

tions: atoms (A), bonds (B), connections (C), chirality

(Ch), hydrogen atoms (H) and donor/acceptor (DA). To

evaluate the hologram generation, numerous models

with the various combinations of the parameters were

developed. The validity of the model depends on the

statistical parameters such as cross-validated r2 (q2), non

cross-validated r2 by Leave-One-Out (LOO), r2pred and

standard error. The predictive ability of HQSAR models

was expressed using the following formula where SD

is the sum of squared deviation between the biological

activity of the test set and the mean activity of the train-

ing set molecules and the PRESS is the sum of squared

deviations between predicted and observed activity

value for every molecule ion the test set[17].

 r2pred = (SD-PRESS)/SD

Once the structural information is encoded into the

molecular hologram, HQSAR runs a PLS analysis to

derive the HQSAR in which the molecular holograms

generated were used as independent variables. The

robustness of the model depends on the more challeng-

ing r2pred from the test set data.

3. Results and Discussion

3.1. HQSAR Analysis

HQSAR model generation was performed on 65 ben-

zylthio imidazol acetic acid derivatives using three dis-

tinct parameters namely fragment size, hologram length

and fragment distinction. 5 different combinations of

training and test set molecules were used to develop

HQSAR model and 15 HQSAR models using the dif-

ferent fragment distinction with the fragment size 4-7

were generated for each combination. Hence a total of

75 HQSAR models were generated in this study. The

models generated using the combination of atoms,

bonds, connections and donor/acceptor gave better

results compared to others. The statistical results of the

generated HQSAR models are shown in Table 2. The

best model from each combination of training and test

set were selected to further investigate the influence of

length of fragment sizes (2-5, 3-6, 4-7, 5-8, 6-9, 7-10

and 8-11) and its results are summarized in Table 3. The

Table 2. HQSAR analysis for various fragment distinctions using default fragment size (4-7)

Model no Fragment Distinction q2 r2 SEE N HL

1 A/B 0.651 0.799 0.477 3 151

2 A/B/C 0.691 0.875 0.381 4 97

3 A/B/C/H 0.643 0.769 0.512 3 199

4 A/B/C/Ch 0.682 0.870 0.384 3 307

5 A/B/C/H/Ch 0.636 0.765 0.515 3 199

6 A/C/DA 0.642 0.928 0.295 6 307

7 A/B/C/H/DA 0.631 0.832 0.441 4 151

8 A/B/H 0.569 0.708 0.575 3 353

9 A/B/H/DA 0.599 0.795 0.487 4 307

10 A/B/C/DA 0.708 0.892 0.353 4 257

11 A/B/Ch/DA 0.626 0.735 0.542 2 307

12 A/B/H/Ch 0.569 0.709 0.574 3 307

13 A/B/DA 0.641 0.747 0.529 2 353

14 A/B/Ch 0.649 0.799 0.477 3 151

15 A/B/C/H/Ch/DA 0.641 0.821 0.455 4 199

16 A/B 0.620 0.786 0.496 3 151

17 A/B/C 0.630 0.849 0.416 3 307

18 A/B/C/H 0.555 0.723 0.564 3 199
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Table 2. Continued

Model no Fragment Distinction q2 r2 SEE N HL

19 A/B/C/Ch 0.642 0.878 0.379 4 307

20 A/B/C/H/Ch 0.555 0.712 0.575 3 151

21 A/C/DA 0.575 0.848 0.422 4 257

22 A/B/C/H/DA 0.631 0.820 0.460 4 151

23 A/B/H 0.535 0.672 0.614 3 151

24 A/B/H/DA 0.569 0.771 0.518 4 151

25 A/B/C/DA 0.668 0.920 0.314 6 307

26 A/B/Ch/DA 0.635 0.874 0.389 5 151

27 A/B/H/Ch 0.534 0.664 0.621 3 151

28 A/B/DA 0.605 0.840 0.434 4 151

29 A/B/Ch 0.627 0.844 0.428 4 151

30 A/B/C/H/Ch/DA 0.584 0.810 0.472 4 151

31 A/B 0.671 0.813 0.442 3 151

32 A/B/C 0.761 0.924 0.288 5 97

33 A/B/C/H 0.656 0.798 0.459 3 199

34 A/B/C/Ch 0.736 0.905 0.319 4 97

35 A/B/C/H/Ch 0.682 0.917 0.305 6 199

36 A/C/DA 0.641 0.940 0.259 6 151

37 A/B/C/H/DA 0.725 0.892 0.344 5 151

38 A/B/H 0.612 0.751 0.510 3 307

39 A/B/H/DA 0.655 0.919 0.301 6 307

40 A/B/C/DA 0.742 0.935 0.266 5 307

41 A/B/Ch/DA 0.666 0.813 0.442 3 97

42 A/B/H/Ch 0.662 0.912 0.313 6 257

43 A/B/DA 0.671 0.818 0.436 3 97

44 A/B/Ch 0.672 0.810 0.446 3 151

45 A/B/C/H/Ch/DA 0.692 0.899 0.333 5 199

46 A/B 0.629 0.797 0.497 3 307

47 A/B/C 0.700 0.873 0.397 4 97

48 A/B/C/H 0.650 0.763 0.536 3 199

49 A/B/C/Ch 0.683 0.873 0.399 4 97

50 A/B/C/H/Ch 0.642 0.759 0.541 3 199

51 A/C/DA 0.633 0.907 0.347 6 97

52 A/B/C/H/DA 0.634 0.813 0.483 4 199

53 A/B/H 0.584 0.719 0.584 3 307

54 A/B/H/DA 0.612 0.788 0.513 4 307

55 A/B/C/DA 0.689 0.873 0.398 4 307

56 A/B/Ch/DA 0.628 0.738 0.559 2 353

57 A/B/H/Ch 0.586 0.715 0.589 3 307

58 A/B/DA 0.639 0.743 0.553 2 353

59 A/B/Ch 0.633 0.793 0.502 3 307

60 A/B/C/H/Ch/DA 0.652 0.819 0.475 4 199

61 A/B 0.628 0.778 0.505 3 151

62 A/B/C 0.609 0.795 0.480 3 97
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Table 2. Continued

Model no Fragment Distinction q2 r2 SEE N HL

63 A/B/C/H 0.578 0.862 0.407 6 151

64 A/B/C/Ch 0.632 0.923 0.300 5 307

65 A/B/C/H/Ch 0.552 0.706 0.574 3 151

66 A/C/DA 0.572 0.791 0.485 3 353

67 A/B/C/H/DA 0.643 0.840 0.443 5 151

68 A/B/H 0.513 0.678 0.601 3 353

69 A/B/H/DA 0.564 0.753 0.532 4 151

70 A/B/C/DA 0.682 0.908 0.328 5 307

71 A/B/Ch/DA 0.637 0.741 0.533 2 307

72 A/B/H/Ch 0.509 0.683 0.596 3 353

73 A/B/DA 0.628 0.731 0.544 2 199

74 A/B/Ch 0.619 0.771 0.507 3 151

75 A/B/C/H/Ch/DA 0.598 0.837 0.437 5 151

Training set 1 (model 1-15): 2,7,11,14,19,25,29,34,39,42,47,53,57,60,63

Training set 2 (model 16-30): 2,8,14,16,20,24,28,33,38,43,48,53,57,61,64

Training set 3 (model 31-45): 2,6,11,14,19,25,30,34,37,42,48,53,56,60,64

Training set 4 (model 46-60): 2,8,13,16,20,24,28,33,40,42,47,53,57,61,63

Training set 5 (model 61-75): 1,5,12,17,21,24,28,35,39,44,48,52,56,60,64

The model chosen are highlighted in bold.

q2 – cross validated correlation coefficient; r2 –non cross validated correlation coefficient; SEE –standard error of estimate;

N – number of statistical components; HL –hologram length; A–atoms; B –bonds; C –connections; H –hydrogen atoms;

Ch – chirality; D/A donor and acceptor.

Table 3. Influence of various fragment size using the best fragment distinction combination (A/B/C/DA)

Model no Fragment Size q2 r2 SEE N HL

10 2-5 0.658 0.839 0.431 4 307

3-6 0.686 0.863 0.397 4 307

4-7 0.708 0.892 0.353 4 257

5-8 0.705 0.936 0.275 5 257

6-9 0.739 0.950 0.244 5 257

7-10 0.786 0.954 0.236 6 257

8-11 0.722 0.894 0.350 4 257

25 2-5 0.610 0.839 0.435 4 307

3-6 0.621 0.850 0.420 4 307

4-7 0.668 0.920 0.314 6 307

5-8 0.644 0.917 0.316 5 257

6-9 0.686 0.897 0.347 4 307

7-10 0.732 0.939 0.625 6 257

8-11 0.690 0.869 0.392 4 257

40 2-5 0.702 0.902 0.328 5 307

3-6 0.727 0.902 0.328 5 307

4-7 0.742 0.935 0.266 5 307

5-8 0.761 0.960 0.212 6 257

6-9 0.777 0.955 0.222 5 307

7-10 0.786 0.957 0.218 6 257

8-11 0.767 0.952 0.231 6 257
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Table 3. Continued

Model no Fragment Size q2 r2 SEE N HL

55 2-5 0.664 0.832 0.457 4 307

3-6 0.681 0.854 0.426 4 307

4-7 0.689 0.873 0.398 4 307

5-8 0.710 0.932 0.295 5 257

6-9 0.729 0.946 0.262 5 257

7-10 0.771 0.954 0.244 6 257

8-11 0.702 0.885 0.382 4 257

60 2-5 0.635 0.848 0.423 5 307

3-6 0.653 0.865 0.398 5 307

4-7 0.682 0.908 0.328 5 307

5-8 0.654 0.877 0.376 4 307

6-9 0.707 0.853 0.406 3 307

7-10 0.709 0.884 0.364 4 257

8-11 0.678 0.826 0.442 3 257

The model chosen for further analysis are highlighted in bold.

Table 4. Statistical result of best HQSAR models using 7-10 fragment size and A/B/C/DA fragment distinction

No Test Set Molecules q2 r2 SEE N HL r2pred

1 2,7,11,14,19,25,29,34,39,42,47,53,57,60,63 0.786 0.954 0.236 6 257 0.739

2 2,8,14,16,20,24,28,33,38,43,48,53,57,61,64 0.732 0.939 0.274 6 257 0.706

3 2,6,11,14,19,25,30,34,37,42,48,53,56,60,64 0.786 0.957 0.218 6 257 0.391

4 2,8,13,16,20,24,28,33,40,42,47,53,57,61,63 0.771 0.954 0.244 6 257 0.633

5 1,5,12,17,21,24,28,35,39,44,48,52,56,60,64 0.709 0.884 0.364 4 257 0.726

The final model is highlighted in bold.

Table 5. Experimental and predicted pIC50 values of training and test set compounds

Compound Actual pIC50

 HQSAR

Predicted ( pIC50) Residual

1 6.229 6.097 0.132

2* 5.602 5.909 -0.307

3 5.699 5.825 -0.126

4 6.105 5.970 0.135

5 5.854 5.988 -0.134

6 6.323 6.041 0.282

7* 6.055 6.058 -0.003

8 6.411 6.434 -0.023

9 5.570 5.561 0.009

10 5.114 5.215 -0.101

11* 5.867 5.812 0.055

12 5.907 5.814 0.093

13 5.625 5.818 -0.193

14* 4.943 5.698 -0.755

15 5.356 5.838 -0.482

16 5.627 5.818 -0.191

17 5.996 5.766 0.230

18 6.796 6.548 0.248

19* 6.731 6.412 0.319
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Table 5. Experimental and predicted pIC50 values of training and test set compounds

Compound Actual pIC50

 HQSAR

Predicted ( pIC50) Residual

20 6.432 6.487 -0.055

21 6.678 6.507 0.171

22 7.143 6.551 0.592

23 5.959 6.323 -0.364

24 6.658 6.420 0.238

25* 6.979 6.336 0.643

26 6.092 6.342 -0.251

27 6.658 6.357 0.301

28 6.432 6.362 0.070

29* 6.237 6.337 -0.100

30 4.975 5.293 -0.318

31 6.347 6.312 0.035

32 6.284 6.225 0.059

33 6.420 6.508 -0.088

34* 6.328 6.456 -0.128

35 5.921 6.008 -0.087

36 6.131 6.210 -0.079

37 5.796 5.819 -0.023

38 7.538 7.350 0.188

39* 5.538 6.225 -0.687

40 6.009 6.146 -0.137

41 6.482 6.163 0.319

42* 7.347 6.122 1.225

43 6.824 7.070 -0.246

44 8.097 7.972 0.125

45 6.638 7.017 -0.379

46 5.657 5.409 0.249

47* 8.301 8.299 0.002

48 8.699 8.374 0.325

49 7.347 7.516 -0.169

50 8.699 8.992 -0.293

51 8.523 8.542 -0.019

52 7.387 7.211 0.176

53* 7.482 8.541 -1.060

54 8.398 8.630 -0.232

55 8.398 8.344 0.054

56 8.301 8.542 -0.241

57* 8.046 8.580 -0.534

58 8.770 8.619 0.151

59 7.796 7.569 0.227

60* 7.796 7.515 0.281

61 7.229 7.375 -0.146

62 7.143 7.326 -0.183

63* 6.305 7.153 -0.848

64 6.971 6.947 0.024

65 8.523 8.402 0.121

*Test set compounds
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statistical parameters showed that there is significant

improvement by changing the fragment size. Larger

fragment size was favored for improving statistical

results in the form of q2 and r2 value. We had chosen

the best model with higher q2 and lower SEE values as

summarized in Table 3 for examining the predictive

ability of test set molecules. The statistical values of the

best models with different training and test set com-

pounds along with its r2pred are tabulated in Table 4.

Based on better q2 and r2pred values the final model was

selected (q2=0.786, r2=0.954, SEE=0.236, r2pred =0.739)

which was built using parameters A/B/C/DA as frag-

ment distinction, fragment size set to min 7 and max 10

with hologram length 257 and 6 components. The

detailed predicted versus actual activities along with the

residual values for training and test set was depicted in

Table 5 and plotted in Fig. 1. Low residual values

obtained for developed HQSAR model indicates its reli-

ability and can be used to predict the biological activity

of novel compounds.

3.2. HQSAR Contribution Map Analysis

The HQSAR results gave direct evidence about the

individual atomic contributions to the biological activity

through the use of different color codes. The contribu-

Fig. 1. Scatter plot diagram of predicted versus actual

activity of training set and test set compounds by HQSAR

analyses. 

Fig. 2. HQSAR contribution map.
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tions of the different fragments for the activity of the

molecules are displayed in Fig. 2. The colors at the red

end of the spectrum indicates the poor contributions

(red, red orange and orange), while colors at the green

end reflect favorable contributions (yellow, green blue

and green). Atoms with intermediate contributions are

colored in white. 

In the contribution map we found that the scaffold of

benzylthio imidazol derivatives are represented in white

in all compounds which depicts the intermediate con-

tribution of scaffold in the activity of all molecules. The

generated HQSAR model for few compounds is shown

in Figure 2 where the A and B ring are colored in cyan

color which indicates the common substructure and it

contributes to the inhibitory activity of the compound.

In the highly active compounds (58, 50 and 54), the C

ring is covered by green and yellow color and also the

CH3 groups attached to it is covered by green which

confirms of the presence of C ring and its substituents

are strongly responsible for the improved activity. For

the compound 52, the presence of MeSO2 attached to

the A ring indicates that this may be the reason for its

intermediate activity. The compounds from 1 to 18 does

not have C ring and hence does not show either good

or poor contribution. The compounds such as 46, 10 and

30 have lower activity then others and its contribution

map shows that the presences of H at the A ring are

alone highlighted in red and brown which normally

depicts the poor contributions. 

4. Conclusion

This study was conducted to rationalize the ben-

zylthio imidazol acetic acid derivatives by HQSAR

analysis. All the generated models showed good statis-

tical results in terms of q2 and r2 values. The best model

was selected based on high q2 (0.786) and r2pred (0.739)

values. Contribution map show that presence of C ring

and its substituents makes favorable contributions in the

highly active compounds. This study is useful for the

discovery of novel antagonists for CRTh2 receptor.
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