DOI QR코드

DOI QR Code

Role of histone deacetylase 2 and its posttranslational modifications in cardiac hypertrophy

  • Eom, Gwang Hyeon (Department of Pharmacology and Medical Research Center for Gene Regulation, Chonnam National University Medical School) ;
  • Kook, Hyun (Department of Pharmacology and Medical Research Center for Gene Regulation, Chonnam National University Medical School)
  • Received : 2014.11.10
  • Published : 2015.03.31

Abstract

Cardiac hypertrophy is a form of global remodeling, although the initial step seems to be an adaptation to increased hemodynamic demands. The characteristics of cardiac hypertrophy include the functional reactivation of the arrested fetal gene program, where histone deacetylases (HDACs) are closely linked in the development of the process. To date, mammalian HDACs are divided into four classes: I, II, III, and IV. By structural similarities, class II HDACs are then subdivided into IIa and IIb. Among class I and II HDACs, HDAC2, 4, 5, and 9 have been reported to be involved in hypertrophic responses; HDAC4, 5, and 9 are negative regulators, whereas HDAC2 is a pro-hypertrophic mediator. The molecular function and regulation of class IIa HDACs depend largely on the phosphorylation-mediated cytosolic redistribution, whereas those of HDAC2 take place primarily in the nucleus. In response to stresses, posttranslational modification (PTM) processes, dynamic modifications after the translation of proteins, are involved in the regulation of the activities of those hypertrophy-related HDACs. In this article, we briefly review 1) the activation of HDAC2 in the development of cardiac hypertrophy and 2) the PTM of HDAC2 and its implications in the regulation of HDAC2 activity.

Keywords

References

  1. Eom GH and Kook H (2014) Posttranslational modifications of histone deacetylases: implications for cardiovascular diseases. Pharmacol Ther 143, 168-180 https://doi.org/10.1016/j.pharmthera.2014.02.012
  2. Frey N and Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65, 45-79 https://doi.org/10.1146/annurev.physiol.65.092101.142243
  3. Hill JA and Olson EN (2008) Cardiac plasticity. N Engl J Med 358, 1370-1380 https://doi.org/10.1056/NEJMra072139
  4. Hunter DJ and Reddy KS (2013) Noncommunicable diseases. N Engl J Med 369, 1336-1343 https://doi.org/10.1056/NEJMra1109345
  5. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R and Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601-605 https://doi.org/10.1038/21224
  6. Beg AA, Finco TS, Nantermet PV and Baldwin AS Jr (1993) Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation. Mol Cell Biol 13, 3301-3310 https://doi.org/10.1128/MCB.13.6.3301
  7. Maudsley S, Pierce KL, Zamah AM et al (2000) The beta(2)-adrenergic receptor mediates extracellular signalregulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor. J Biol Chem 275, 9572-9580 https://doi.org/10.1074/jbc.275.13.9572
  8. Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA and Olson EN (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479-488 https://doi.org/10.1016/S0092-8674(02)00861-9
  9. Park CW and Ryu KY (2014) Cellular ubiquitin pool dynamics and homeostasis. BMB Rep 47, 475-482 https://doi.org/10.5483/BMBRep.2014.47.9.128
  10. Santos-Rosa H, Valls E, Kouzarides T and Martinez-Balbas M (2003) Mechanisms of P/CAF auto-acetylation. Nucleic Acids Res 31, 4285-4292 https://doi.org/10.1093/nar/gkg655
  11. Gu W and Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595-606 https://doi.org/10.1016/S0092-8674(00)80521-8
  12. Evans PM, Zhang W, Chen X, Yang J, Bhakat KK and Liu C (2007) Kruppel-like factor 4 is acetylated by p300 and regulates gene transcription via modulation of histone acetylation. J Biol Chem 282, 33994-34002 https://doi.org/10.1074/jbc.M701847200
  13. Driessen HP, de Jong WW, Tesser GI and Bloemendal H (1985) The mechanism of N-terminal acetylation of proteins. CRC Crit Rev Biochem 18, 281-325 https://doi.org/10.3109/10409238509086784
  14. Laherty CD, Yang WM, Sun JM, Davie JR, Seto E and Eisenman RN (1997) Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89, 349-356 https://doi.org/10.1016/S0092-8674(00)80215-9
  15. Nagy L, Kao HY, Chakravarti D et al (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89, 373-380 https://doi.org/10.1016/S0092-8674(00)80218-4
  16. Fischle W, Dequiedt F, Hendzel MJ et al (2002) Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 9, 45-57 https://doi.org/10.1016/S1097-2765(01)00429-4
  17. Jones P, Altamura S, De Francesco R et al (2008) Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases. Bioorg Med Chem Lett 18, 1814-1819 https://doi.org/10.1016/j.bmcl.2008.02.025
  18. McKinsey TA, Zhang CL and Olson EN (2000) Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci U S A 97, 14400-14405 https://doi.org/10.1073/pnas.260501497
  19. Eom GH, Nam YS, Oh JG et al (2014) Regulation of acetylation of histone deacetylase 2 by p300/CBP-associated factor/histone deacetylase 5 in the development of cardiac hypertrophy. Circ Res 114, 1133-1143 https://doi.org/10.1161/CIRCRESAHA.114.303429
  20. Nebbioso A, Manzo F, Miceli M et al (2009) Selective class II HDAC inhibitors impair myogenesis by modulating the stability and activity of HDAC-MEF2 complexes. EMBO Rep 10, 776-782 https://doi.org/10.1038/embor.2009.88
  21. Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA and Olson EN (2004) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24, 8467-8476 https://doi.org/10.1128/MCB.24.19.8467-8476.2004
  22. Vega RB, Harrison BC, Meadows E et al (2004) Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 24, 8374-8385 https://doi.org/10.1128/MCB.24.19.8374-8385.2004
  23. Hubbert C, Guardiola A, Shao R et al (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417, 455-458 https://doi.org/10.1038/417455a
  24. Montgomery RL, Davis CA, Potthoff MJ et al (2007) Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21, 1790-1802 https://doi.org/10.1101/gad.1563807
  25. Azechi T, Kanehira D, Kobayashi T et al (2013) Trichostatin A, an HDAC class I/II inhibitor, promotes pi-induced vascular calcification via up-regulation of the expression of alkaline phosphatase. J Atheroscler Thromb 20, 538-547 https://doi.org/10.5551/jat.15826
  26. Johnstone RW (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1, 287-299 https://doi.org/10.1038/nrd772
  27. Kee HJ, Kwon JS, Shin S, Ahn Y, Jeong MH and Kook H (2011) Trichostatin A prevents neointimal hyperplasia via activation of Kruppel like factor 4. Vascul Pharmacol 55, 127-134 https://doi.org/10.1016/j.vph.2011.07.001
  28. Cincarova L, Zdrahal Z and Fajkus J (2013) New perspectives of valproic acid in clinical practice. Expert Opin Investig Drugs 22, 1535-1547 https://doi.org/10.1517/13543784.2013.853037
  29. Liu F, Levin MD, Petrenko NB et al (2008) Histone-deacetylase inhibition reverses atrial arrhythmia inducibility and fibrosis in cardiac hypertrophy independent of angiotensin. J Mol Cell Cardiol 45, 715-723 https://doi.org/10.1016/j.yjmcc.2008.08.015
  30. Zhao TC, Cheng G, Zhang LX, Tseng YT and Padbury JF (2007) Inhibition of histone deacetylases triggers pharmacologic preconditioning effects against myocardial ischemic injury. Cardiovasc Res 76, 473-481 https://doi.org/10.1016/j.cardiores.2007.08.010
  31. Lee TM, Lin MS and Chang NC (2007) Inhibition of histone deacetylase on ventricular remodeling in infarcted rats. Am J Physiol Heart Circ Physiol 293, H968-977 https://doi.org/10.1152/ajpheart.00891.2006
  32. Granger A, Abdullah I, Huebner F et al (2008) Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J 22, 3549-3560 https://doi.org/10.1096/fj.08-108548
  33. Lee HA, Lee DY, Cho HM, Kim SY, Iwasaki Y and Kim IK (2013) Histone deacetylase inhibition attenuates transcriptional activity of mineralocorticoid receptor through its acetylation and prevents development of hypertension. Circ Res 112, 1004-1012 https://doi.org/10.1161/CIRCRESAHA.113.301071
  34. Cho YK, Eom GH, Kee HJ et al (2010) Sodium valproate, a histone deacetylase inhibitor, but not captopril, prevents right ventricular hypertrophy in rats. Circ J 74, 760-770 https://doi.org/10.1253/circj.CJ-09-0580
  35. Eom GH, Cho YK, Ko JH et al (2011) Casein kinase-2alpha1 induces hypertrophic response by phosphorylation of histone deacetylase 2 S394 and its activation in the heart. Circulation 123, 2392-2403 https://doi.org/10.1161/CIRCULATIONAHA.110.003665
  36. Kee HJ, Sohn IS, Nam KI et al (2006) Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 113, 51-59 https://doi.org/10.1161/CIRCULATIONAHA.105.559724
  37. Kook H, Lepore JJ, Gitler AD et al (2003) Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J Clin Invest 112, 863-871 https://doi.org/10.1172/JCI19137
  38. Kong Y, Tannous P, Lu G et al (2006) Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 113, 2579-2588 https://doi.org/10.1161/CIRCULATIONAHA.106.625467
  39. Kee HJ, Eom GH, Joung H et al (2008) Activation of histone deacetylase 2 by inducible heat shock protein 70 in cardiac hypertrophy. Circ Res 103, 1259-1269 https://doi.org/10.1161/01.RES.0000338570.27156.84
  40. Gallo P, Latronico MV, Gallo P et al (2008) Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. Cardiovasc Res 80, 416-424 https://doi.org/10.1093/cvr/cvn215
  41. Trivedi CM, Luo Y, Yin Z et al (2007) Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 13, 324-331 https://doi.org/10.1038/nm1552
  42. Monteforte N, Napolitano C and Priori SG (2012) Genetics and arrhythmias: diagnostic and prognostic applications. Rev Esp Cardiol (Engl Ed) 65, 278-286 https://doi.org/10.1016/j.recesp.2011.10.008
  43. Ismat FA, Zhang M, Kook H et al (2005) Homeobox protein Hop functions in the adult cardiac conduction system. Circ Res 96, 898-903 https://doi.org/10.1161/01.RES.0000163108.47258.f3
  44. Trivedi CM, Zhu W, Wang Q et al (2010) Hopx and Hdac2 interact to modulate Gata4 acetylation and embryonic cardiac myocyte proliferation. Dev Cell 19, 450-459 https://doi.org/10.1016/j.devcel.2010.08.012
  45. Zhu W, Trivedi CM, Zhou D, Yuan L, Lu MM and Epstein JA (2009) Inpp5f is a polyphosphoinositide phosphatase that regulates cardiac hypertrophic responsiveness. Circ Res 105, 1240-1247 https://doi.org/10.1161/CIRCRESAHA.109.208785
  46. Kee HJ and Kook H (2009) Kruppel-like factor 4 mediates histone deacetylase inhibitor-induced prevention of cardiac hypertrophy. J Mol Cell Cardiol 47, 770-780 https://doi.org/10.1016/j.yjmcc.2009.08.022
  47. Liao X, Haldar SM, Lu Y et al (2010) Kruppel-like factor 4 regulates pressure-induced cardiac hypertrophy. J Mol Cell Cardiol 49, 334-338 https://doi.org/10.1016/j.yjmcc.2010.04.008
  48. Levy L, Wei Y, Labalette C et al (2004) Acetylation of beta-catenin by p300 regulates beta-catenin-Tcf4 interaction. Mol Cell Biol 24, 3404-3414 https://doi.org/10.1128/MCB.24.8.3404-3414.2004
  49. Chen LF, Mu Y and Greene WC (2002) Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J 21, 6539-6548 https://doi.org/10.1093/emboj/cdf660
  50. Ito A, Kawaguchi Y, Lai CH et al (2002) MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 21, 6236-6245 https://doi.org/10.1093/emboj/cdf616
  51. Ito K, Yamamura S, Essilfie-Quaye S et al (2006) Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression. J Exp Med 203, 7-13 https://doi.org/10.1084/jem.20050466
  52. Watamoto K, Towatari M, Ozawa Y et al (2003) Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation. Oncogene 22, 9176-9184 https://doi.org/10.1038/sj.onc.1206902
  53. Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834-840 https://doi.org/10.1126/science.1175371
  54. Nott A, Watson PM, Robinson JD, Crepaldi L and Riccio A (2008) S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature 455, 411-415 https://doi.org/10.1038/nature07238
  55. Colussi C, Mozzetta C, Gurtner A et al (2008) HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proc Natl Acad Sci U S A 105, 19183-19187 https://doi.org/10.1073/pnas.0805514105
  56. Malhotra D, Thimmulappa RK, Mercado N et al (2011) Denitrosylation of HDAC2 by targeting Nrf2 restores glucocorticosteroid sensitivity in macrophages from COPD patients. J Clin Invest 121, 4289-4302 https://doi.org/10.1172/JCI45144
  57. Brandl A, Wagner T, Uhlig KM et al (2012) Dynamically regulated sumoylation of HDAC2 controls p53 deacetylation and restricts apoptosis following genotoxic stress. J Mol Cell Biol 4, 284-293 https://doi.org/10.1093/jmcb/mjs013
  58. Galasinski SC, Resing KA, Goodrich JA and Ahn NG (2002) Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. J Biol Chem 277, 19618-19626 https://doi.org/10.1074/jbc.M201174200
  59. Adenuga D and Rahman I (2010) Protein kinase CK2-mediated phosphorylation of HDAC2 regulates co-repressor formation, deacetylase activity and acetylation of HDAC2 by cigarette smoke and aldehydes. Arch Biochem Biophys 498, 62-73 https://doi.org/10.1016/j.abb.2010.04.002
  60. Adenuga D, Yao H, March TH, Seagrave J and Rahman I (2009) Histone deacetylase 2 is phosphorylated, ubiquitinated, and degraded by cigarette smoke. Am J Respir Cell Mol Biol 40, 464-473 https://doi.org/10.1165/rcmb.2008-0255OC

Cited by

  1. Evidence of epigenetic tags in cardiac fibrosis vol.69, pp.2, 2017, https://doi.org/10.1016/j.jjcc.2016.10.004
  2. Mechanisms of transcription factor acetylation and consequences in hearts vol.1862, pp.12, 2016, https://doi.org/10.1016/j.bbadis.2016.08.011
  3. Proteasome inhibitors attenuated cholesterol-induced cardiac hypertrophy in H9c2 cells vol.49, pp.5, 2016, https://doi.org/10.5483/BMBRep.2016.49.5.187
  4. PP2A negatively regulates the hypertrophic response by dephosphorylating HDAC2 S394 in the heart vol.50, pp.7, 2018, https://doi.org/10.1038/s12276-018-0121-2
  5. Statins and Histone Deacetylase Inhibitors Affect Lamin A/C – Histone Deacetylase 2 Interaction in Human Cells vol.7, pp.2296-634X, 2019, https://doi.org/10.3389/fcell.2019.00006