DOI QR코드

DOI QR Code

Analytical and Experimental Study on a Thermal Liquid Mass Flow Meter

가열식 액체용 질량유량계측기에 관한 이론 및 실험적 연구

  • Kim, Taig Young (Dept. of Mechanical Engineering, Korea Polytechnic Univ.) ;
  • Kang, Chang Hoon (Dept. of Mechanical Engineering, Korea Polytechnic Univ.) ;
  • Shin, Yoon Sub (Dept. of Mechanical Engineering, Korea Polytechnic Univ.) ;
  • Kim, Tae Su (Dept. of Mechanical Engineering, Korea Polytechnic Univ.) ;
  • Choi, Seon Ho (Dept. of Mechanical Engineering, Korea Polytechnic Univ.)
  • 김택영 (한국산업기술대학교 기계공학과) ;
  • 강창훈 (한국산업기술대학교 기계공학과) ;
  • 신윤섭 (한국산업기술대학교 기계공학과) ;
  • 김태수 (한국산업기술대학교 기계공학과) ;
  • 최선호 (한국산업기술대학교 기계공학과)
  • Received : 2014.08.07
  • Accepted : 2015.02.02
  • Published : 2015.04.01

Abstract

Numerical analysis and experimental verification of a thermal liquid mass flow meter (LMFM) were performed. The configuration of the LMFM was the same as a gas mass flow meter (GMFM), but the opposite results in temperature difference between upstream and downstream thermistors occurred. In the case of the gas, the convection depending on the flow of thermal mass was small and comparable to the conduction through the sensor tube wall. The temperature difference was proportional to the mass flow rate due to their interaction. For the liquid flow, the convection overwhelmed the wall conduction because of the large flow of thermal mass caused by high density. The temperature difference in this case was inversely proportional to the mass flow rate. The tube diameter and heater wiring width are important design parameters, and the optimized sensor can be used to measure and control the infinitesimal liquid flow rate.

가열식 액체용 질량유량계측기(LMFM, Liquid Mass Flow Meter)에 대하여 수치해석적으로 분석하였으며 실험을 통하여 검증하였다. 기존의 기체용 질량유량계측기(GMFM, Gas Mass Flow Meter)와 동일한 구조로 설계하였으나 계측온도차는 기체용에 비하여 정 반대의 특성을 나타낸다. 기체는 열용량이 작아서 계측관벽을 통한 전도열전달이 기체의 유동에 따른 대류열전달에 대응할 정도이므로 이들 상호작용의 결과 상 하류 써미스터의 온도차가 질량유량에 비례한다. 반면, 열용량이 큰 액체의 경우 대류열전달이 지배적이 되어 계측관벽을 통한 전도열전달이 무시되며, 결과적으로 온도차가 질량유량에 반비례한다. 계측관경과 히터의 권선폭은 LMFM 의 중요한 설계인자로서 각각 최적화가 필요하다. 최적화 설계를 통하여 제작한 계측기는 반도체 생산장비의 극소유량 정밀제어 및 공급용으로 사용할 수 있다.

Keywords

References

  1. Toda, K., Maeda, Y., Sanemasa, I., Ishikawa, K. and Kimura, N., 1998, "Characteristics of a Thermal Mass-Flow Sensor in Vacuum Systems," Sensors and Actuators A, Vol. 69, pp. 62-67. https://doi.org/10.1016/S0924-4247(97)01756-1
  2. Tison, S. A., 1996, "A Critical Evaluation of Thermal Mass Flow Meters," J. Vac. Sci. Technol. A, Vol. 14, No. 4, pp. 2582-2591. https://doi.org/10.1116/1.579985
  3. Kim, S. J. and Jang, S. P., 2001, "Experimental and Numerical Analysis of Heat Transfer Phenomena in a Sensor Tube of a Mass Flow Controller," Int. J. Heat Mass Transfer, Vol. 44, pp. 1711-1724. https://doi.org/10.1016/S0017-9310(00)00216-7
  4. Henry, M. P., Clark, C., Duta, M., Cheesewright, R. and Tombs, M., 2003, "Response of a Coriolis Mass Flow Meter to Step Changes in Flow Rate," Flow Measurement and Instrumentation, Vol. 14, pp. 109-118. https://doi.org/10.1016/S0955-5986(03)00014-1
  5. Cheesewright, R., Clark, C., Belhadj, A. and Hou, Y. Y., 2003, "The Dynamic Response of Coriolis Mass Flow Meters," Journal of Fluid Structures, Vol. 18, pp. 165-178. https://doi.org/10.1016/j.jfluidstructs.2003.06.001
  6. Clark, C., Wang, S. and Cheesewright, R., 2006, "The Performance Characteristics of a Micro-machined Coriolis Flow Meter: An Evaluation by Simulation," Flow Measurement and Instrumentation, Vol. 17, pp. 325-333. https://doi.org/10.1016/j.flowmeasinst.2006.06.003
  7. Viswanathan, M., Kandaswamy, A., Sreekala, S. K. and Sajna, K. V., 2002, "Development, Modeling and Certain Investigations on Thermal Mass Flow Meters," Flow Measurement and Instrumentation, Vol. 12, pp. 353-360. https://doi.org/10.1016/S0955-5986(02)00002-X
  8. Kim, D. K., Han, I. Y. and Kim, S. J., 2007, "Study on the Steady-state Characteristics of the Sensor Tube of a Thermal Mass Flow Meter," Int. J. Heat Mass Transfer, Vol. 50, pp.1206-1211. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.021