DOI QR코드

DOI QR Code

Effect of Loading Rate on the Deformation Behavior of SA508 Gr.1a Low Alloy Steel and TP316 Stainless Steel Pipe Materials at RT and 316℃

상온과 316℃에서 SA508 Gr.1a 저합금강 배관과 TP316 스테인리스강 배관의 변형거동에 미치는 하중속도의 영향

  • Received : 2015.01.09
  • Accepted : 2015.02.04
  • Published : 2015.04.01

Abstract

This study conducted tensile tests on SA508 Gr.1a low alloy steel and SA312 TP316 stainless steel piping materials under various strain rates at room temperature (RT) and $316^{\circ}C$ to investigate the effects of loading rate on the deformation behavior of nuclear piping materials. At RT, the deformation behavior for both pipe materials showed a typical loading rate dependence, i.e., the strength increased and the ductility decreased as the loading rate increased. At $316^{\circ}C$, however, the strength and elongation of SA508 Gr.1a low alloy steel decreased as the loading rate increased, and its reduction of area non-linearly varied with the loading rate. For SA312 TP316 stainless steel, the strength, elongation, and reduction of area at $316^{\circ}C$ were almost the same regardless of the loading rate. At both temperatures, the strain hardening capacity was nearly independent of the loading rate for SA508 Gr.1a low alloy steel, while it decreased with increasing loading rate for SA312 TP316 stainless steel.

본 논문에서는 원전 배관 재료의 변형거동에 미치는 하중속도의 영향을 파악하기 위해서, SA508 Gr.1a 저합금강과 SA312 TP316 스테인리스강 배관재를 대상으로 상온과 원전 운전온도인 $316^{\circ}C$에서 다양한 변형률 속도로 인장시험을 수행하였다. 시험 결과, 상온에서는 두 배관재의 변형거동이 일반적인 하중속도 의존성을 보였다. 즉, 하중속도가 증가함에 따라 강도는 증가하고 연성은 감소하는 경향을 보였다. 그러나, $316^{\circ}C$에서는 하중속도가 증가함에 따라 SA508 Gr.1a 저합금강의 강도와 연신률이 모두 감소하였고 단면수축률은 감소 후 증가하는 비선형 거동을 보였다. SA312 TP316 스테인리스강의 강도, 연신률, 그리고 단면수축률은 하중속도에 관계없이 거의 일정한 값을 보였다. 시험 온도에 관계없이 SA508 Gr.1a 저합금강의 가공경화능력은 하중속도에 거의 영향을 받지 않았으나, SA312 TP316 스테인리스강에서는 하중속도가 증가함에 따라 가공경화능력이 감소하였다.

Keywords

References

  1. Budnitz, R.J., Amico, P.J., Cornell, C.A., Hall, W.J., Kennedy, R.P., Reed, J.W. and Shinozuka, M, 1985, "An Approach to the Quantification of Seismic Margins in Nuclear Power Plants," NUREG/CR-4334.
  2. DeGrassi, G., Nie, J. and Hofmayer, C., 2008, "Seismic Analysis of Large-Scale Piping Systems for the JNES-NUPEC Ultimate Strength Piping Test Program," NUREG/CR-6983.
  3. Stevenson, J.D., 2014, "Summary of the Historical Development of Seismic Design of Nuclear Power Plants in Japan and the U.S.," Nucl. Eng. & Design, Vol. 269, pp. 160-164. https://doi.org/10.1016/j.nucengdes.2013.08.023
  4. Kostov, M., 2014, "Seismic Safety Evaluation Based on DIP," Nucl. Eng. & Design, Vol. 269, pp. 256-261. https://doi.org/10.1016/j.nucengdes.2013.08.037
  5. American Society of Mechanical Engineer, ASME B&PV Code Sec.III, "Nuclear components," 1998ed.
  6. American Society of Mechanical Engineer, ASME B&PV Code Sec.XI, "Rules for Inservice Inspection of Nuclear Power Plant Components," 1998ed.
  7. Tong, L.L., Duan, R. and Cao, X.W., 2015, "Seismic Analysis of RCS with Finite Element Model for Advanced PWR," Prog. Nucl. Energy, Vol. 79, pp. 142-149. https://doi.org/10.1016/j.pnucene.2014.11.020
  8. Scott, P., Olson, R., Bockbrader, J., Wilson, M., Gruen, B., Morbitzer, R., Yang, Y., Williams, C., Brust, F., Fredette, L. and Ghadiali, N., 2005, "The Battelle Integrity of Nuclear Piping (BINP) Program Final Report," NUREG/CR-6837, Vol.2.
  9. Hopper, A., Wilkowski, G., Scott, P., Olson, R., Rudland, D., Kilinski, T., Mohan, R., Ghadiali, N. and Paul, D., 1996, "The Second International Piping Integrity Research Group (IPIRG-2) Program - Final Report," NUREG/CR-6452, BMI-2195.
  10. Boyce, B.L. and Dilmore, M.F., 2009, "The Dynamic Tensile Behavior of Tough, Ultra-Strength Steels at Strain-Rates from $0.0002s^{-1}\;to\;200s^{-1}$," Int. J. Impact Eng., Vol.36, pp. 263-271. https://doi.org/10.1016/j.ijimpeng.2007.11.006
  11. Solomos, G., Albertini, C., Labibes, K., Pizzinato, V. and Viaccoz, B., 2004, "Strain Rate Effects in Nuclear Steels at Room and Higher Temperatures," Nucl. Eng. & Design, Vol. 229, pp. 139-149. https://doi.org/10.1016/j.nucengdes.2003.10.006
  12. American Standard for Testing Materials, 2009, "Standard Test Methods for Tension Testing on Metallic Materials," ASTM E8/E8M-09.
  13. Baird, J.D, 1971, "The Effects of Strain Aging due to Interstitial Solutes on the Mechanical Properties of Metals," Metall. Reviews, Vol.16, pp.1-18.
  14. Marschall, C.W., Mohan, R., Krishnaswamy, P. and Wilkowski, G., 1994, "Effect of Dynamic Strain Aging on the Strength and Toughness of Nuclear Ferritic Piping at LWR Temperatures," NUREG/CR-6226.
  15. Diter, G.E., 1988, Mechanical Metallurgy, McGraw-Hill, London, pp. 283-301.
  16. American Standard for Testing Materials, 2007, "Standard Test Methods for Tensile Strain-Hardening Exponents (n-Values) of Metallic Steel Materials," ASTM E646-07.
  17. Murty, K.L. and Charit, I., 2009, An Introduction to Nuclear Materials - Fundamental and Applications, Wiley-VCH, Weinhein, pp.193-195.