BASE OF THE NON-POWERFUL SIGNED TOURNAMENT

Byeong Moon Kim and Byung Chul Song*

Abstract

A signed digraph S is the digraph D by assigning signs 1 or -1 to each arc of D. The base of S is the minimum number k such that there is a pair walks which have the same initial and terminal point with length k, but different signs. In this paper we show that for $n \geq 5$ the upper bound of the base of a primitive non-powerful signed tournament S_{n}, which is the signed digraph by assigning 1 or -1 to each arc of a primitive tournament T_{n}, is $\max \{2 n+2, n+11\}$. Moreover we show that it is extremal except when $n=5,7$.

1. Introduction

A digraph $D=(V, A)$ is primitive if there is a positive integer k such that for each vertices u, v of D, there is a directed walk of length k from u to v. A signed digraph S is a digraph where each arc of S is assigned signs 1 or -1 . If W is a directed walk of a signed digraph S, then the multiple of signs of all arcs in W is said to be the sign of W in S, denoted by $\operatorname{sgn}(W)$. If two walks W_{1} and W_{2} have the same initial point, the same terminal point, the same length and different signs, then we say that W_{1} and W_{2} are a pair of $S S S D$ walks. A signed digraph S is

[^0]powerful if S contains no pair of SSSD walks. S is non-powerful if it is not powerful. So every primitive non-powerful signed digraph contains a pair of SSSD walks. From now on we assume that S is a primitive nonpowerful signed digraph. For each pair of vertices u, v of S, we define the local base $l_{S}(u, v)$ from u to v by the smallest integer l such that if $k \geq l$, then there is a pair of SSSD walks of length k in S from u to v. We define the base $l(S)$ of S by $\max \left\{l_{S}(u, v) \mid u, v \in V(S)\right\}$.

A square matrix with its entries in the sign set $\{1,0,-1\}$ is said to be the sign pattern matrix. In computing the powers of A, we use the usual arithmetic rules of signs such that $1+1=1,-1+(-1)=-1$ and $1 \cdot 1=-1 \cdot(-1)=1$ and $1 \cdot(-1)=-1$. Sometimes we contact the ambiguous situations such that $1+(-1)$ or $(-1)+1$. As in [3], in this case we use the symbol \sharp as follows:

$$
\begin{gathered}
(-1)+1=1+(-1)=\sharp ; \quad a+\sharp=\sharp+a=\sharp \text { for any } a \in\{1,-1, \sharp, 0\} \\
0 \cdot \sharp=\sharp \cdot 0=0 ; \quad b \cdot \sharp=\sharp \cdot b=\sharp \text { for any } b \in\{1,-1, \sharp\} .
\end{gathered}
$$

When the power of a sign pattern matrix contains \sharp entry it is convinient to expand the sign set as follows $\Gamma=\{1,0,-1, \sharp\}$. A square matrix with its entries in the sign set $\Gamma=\{1,0,-1, \sharp\}$ is said to be the generalized sign pattern matrix. A sign pattern matrix A is said to be powerful if each power of A contains no \sharp entry. And A is non-powerful if it is not powerful. When we deal with the non-powerful sign pattern matrix we use the generalized one. Since we use non-powerful sign pattern matrix, throughout this paper we simply say the sign pattern matrix instead of the generalized sign pattern matrix.

Let $A=\left(a_{i j}\right)$ be the adjacency matrix of the signed digraph S, that is $(i, j) \in A$ and $\operatorname{sgn}(i, j)=\alpha$ if and only if $a_{i j}=\alpha$ where $\alpha=1$, or -1 . Hence A is the sign pattern matrix. A least positive integer l such that there is a positive integer p satisfying $A^{l}=A^{l+p}$ is said to be the base of A, and denoted by $l(A)$. Li et al. [3], showed that if a sign pattern matrix A is powerful, then $l(A)=l(|A|)$ where $|A|$ is the matrix by assigning each non-zero entries of A to 1 . If A is non-powerful, then the \sharp entry appears and we have different situations. It follows directly from the definitions $l(S)=l(A)$ where A is the adjacency matrix of S. Gao, Huang and Shao [2], Shao and Gao [6] and Li and Liu [4] studied the base and local base of the primitive non-powerful signed symmetric digraphs with loops. Song and Kim [7] computed the base of the non-powerful signed complete graphs.

In this paper we show that for $n \geq 5$ the upper bound of the base $l\left(T_{n}\right)$ of a primitive non-powerful signed tournament T_{n} of order n is $\max \{2 n+2, n+11\}$ and this bound is extremal when $n \neq 5,7$. When $n=5$ or 7 , we prove that $l\left(T_{n}\right) \leq n+10$ by providing some examples.

2. Bases of Signed Tournament

A tournament T_{n} of order n is a digraph which can be obtained from the complete graph K_{n} by assigning a direction to each of its edges. It is well known that T_{n} is primitive if and only if T_{n} is strongly connected. Moon and Pullman [5] studied invariant structure of the primitive tournament. Throughout this paper we assume that T_{n} is a primitive nonpowerful signed tournament of order n. The following on T_{n} is well known.

Lemma 1. [1] If T_{n} is strongly connected then each vertex of T_{n} is contained in a simple cycle of length l for each $3 \leq l \leq n$.

The following characteristics of the non-powerful primitive signed digraph are useful to obtain the main results.

Lemma 2. [8] A signed digraph S is non-powerful primitive if and only if S contains a pair of cycles C_{1} and C_{2} of length p_{1} and p_{2} respectively satisfying one of the following holds.
(1) p_{1} is odd and p_{2} is even with $\operatorname{sgn}\left(C_{2}\right)=-1$
(2) p_{1} and p_{2} is odd and $\operatorname{sgn}\left(C_{1}\right)=-\operatorname{sgn}\left(C_{2}\right)$.

Let T_{n} be a primitive non-powerful signed tournament of order n and u, v be two vertices of T_{n} which are not necessarily distinct. By Lemma 1 there is a cycle C_{0} of length n. If we assume that C_{0} is the cycle $v_{0} v_{1} \cdots v_{n-1} v_{0}$ where $v_{0}=u$, then the vertex set is $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$. For each cycle C of T_{n} we define $d(C)=\min \left\{k \mid v_{k}\right.$ is a vertex of $\left.C\right\}$ and $|C|$ to be the length of C. Since a primitive tournament T_{n} contains every cycle of length $3 \leq l \leq n$, thus Lemma 2 can be rewritten as follows:

Lemma 3. Let T_{n} be a primitive signed tournament. Then T_{n} is non-powerful if and only if T_{n} contains a cycle C satisfying one of the following holds.
(1) $|C|$ is even with $\operatorname{sgn}(C)=-1$
(2) $|C|$ is odd and $\operatorname{sgn}(C)=-\operatorname{sgn}\left(C^{\prime}\right)$ for some odd cycle C^{\prime} of T_{n}.

Theorem 1. If $n \geq 5$, then for each pair of vertices u, v of T_{n} there is a pair of SSSD walks from u to v of length less than or equals to $\max \{2 n-1, n+8\}$.

Proof. Since T_{n} is non-powerful we let C be the the first cycle in T_{n} which causes the situation of (1) or (2) in Lemma 3. In other words C is a cycle of T_{n} satisfying one of the followings.
(A): If C is an even cycle, then $\operatorname{sgn}(C)=-1$ and every even cycle C^{\prime} in T_{n} such that $d\left(C^{\prime}\right)<d(C)$, or $d\left(C^{\prime}\right)=d(C)$ and $\left|C^{\prime}\right|<|C|$ satisfies $\operatorname{sgn}\left(C^{\prime}\right)=1$. Moreover every odd cycle C^{\prime} in T_{n} such that $d\left(C^{\prime}\right)<d(C)$, or $d\left(C^{\prime}\right)=d(C)$ and $\left|C^{\prime}\right|<|C|$ have the same sign.
(B): If C is an odd cycle with $d(C) \geq 1$, or $d(C)=0$ and $|C|>3$, then every odd cycle C^{\prime} in T_{n} such that $d\left(C^{\prime}\right)<d(C)$, or $d\left(C^{\prime}\right)=$ $d(C)$ and $\left|C^{\prime}\right|<|C|$ satisfies $\operatorname{sgn}(C)=-\operatorname{sgn}\left(C^{\prime}\right)$. Moreover every even cycle C^{\prime} in T_{n} such that $d\left(C^{\prime}\right)<d(C)$, or $d\left(C^{\prime}\right)=d(C)$ and $\left|C^{\prime}\right|<|C|$ satisfies $\operatorname{sgn}\left(C^{\prime}\right)=1$.
(C): If $|C|=3$ and $d(C)=0$, then there is an odd cycle C^{\prime} in T_{n} such that $d\left(C^{\prime}\right)=0$ and $\left|C^{\prime}\right|=3$ with $\operatorname{sgn}(C)=-\operatorname{sgn}\left(C^{\prime}\right)$.
If $d(C)=k \geq 1$, then since T_{n} is a tournament and by (A) or (B) there is C^{\prime} such that $d\left(C^{\prime}\right)=0$ and $\left|C^{\prime}\right|=|C|$ such that $\operatorname{sgn}(C)=$ $-\operatorname{sgn}\left(C^{\prime}\right)$. Since $d(C)=k, v_{0}, v_{1}, \ldots, v_{k-1}$ is not a vertex of C. We have $|C|=m \leq n-k$. If $v=v_{j}$ with $0 \leq j<k$ then the walk

$$
W_{1}=\left(v_{0} v_{1} \cdots v_{k}\right)+C+\left(v_{k} v_{k+1} \cdots v_{n-1} v_{0} \cdots v_{j}\right)
$$

is the walk of length $\left|W_{1}\right|=k+m+(n-1-k)+1+j=m+n+j$ from $u=v_{0}$ to $v=v_{j}$. And the walk

$$
W_{2}=C^{\prime}+\left(v_{0} v_{1} \cdots v_{n-1} v_{0} \cdots v_{j}\right)
$$

is the walk of length $\left|W_{2}\right|=m+n+j$. Since $m \leq n-k$ and $j<k$, the common length $m+n+j$ of W_{1} and W_{2} is less than or equals to $2 n-1$. We have

$$
\begin{aligned}
\operatorname{sgn}\left(W_{1}\right) & =\operatorname{sgn}(C) \times \operatorname{sgn}\left(v_{0} \cdots v_{n-1} v_{0} \cdots v_{j}\right) \\
& =-\operatorname{sgn}\left(C^{\prime}\right) \times \operatorname{sgn}\left(v_{0} \cdots v_{n-1} v_{0} \cdots v_{j}\right) \\
& =-\operatorname{sgn}\left(W_{2}\right) .
\end{aligned}
$$

So there is a pair of SSSD walks of length less than or equals to $2 n-1$ from u to v. If $v=v_{j}$ with $k \leq j \leq n-1$, then the walk

$$
W_{1}=\left(v_{0} v_{1} \cdots v_{k}\right)+C+\left(v_{k} \cdots v_{j}\right)
$$

is the walk of length $\left|W_{1}\right|=k+m+j-k=m+j$ from u to v. And the walk

$$
W_{2}=C^{\prime}+\left(v_{0} v_{1} \cdots v_{j}\right)
$$

is the walk of length $\left|W_{2}\right|=m+j$. The common length $m+j$ of W_{1} and W_{2} is less than or equals to $2 n-1$. We also have

$$
\begin{aligned}
\operatorname{sgn}\left(W_{1}\right) & =\operatorname{sgn}(C) \times \operatorname{sgn}\left(v_{0} \cdots v_{j}\right) \\
& =-\operatorname{sgn}\left(C^{\prime}\right) \times \operatorname{sgn}\left(v_{0} \cdots v_{j}\right) \\
& =-\operatorname{sgn}\left(W_{2}\right) .
\end{aligned}
$$

So there is a pair of SSSD walks of length less than or equals to $2 n-1$ from u to v.

If $d(C)=0$ and $|C|=3$, then by (C) there is a cycle C^{\prime} in T_{n} where $d\left(C^{\prime}\right)=0$ and $\left|C^{\prime}\right|=3$ such that $\operatorname{sgn}(C)=-\operatorname{sgn}\left(C^{\prime}\right)$. The walks

$$
W_{1}=C+\left(v_{0} v_{1} \cdots v_{j}\right)
$$

and

$$
W_{2}=C^{\prime}+\left(v_{0} v_{1} \cdots v_{j}\right)
$$

are a pair of SSSD walks with common length $3+j(\leq 2 n-1)$ from u to v.

Let $d(C)=0$ and $|C|=m \geq 6$. If m is even, then there is a cycle $C_{\frac{m}{2}}$ in T_{n} where $d\left(C_{\frac{m}{2}}\right)=0$ and $\left|C_{\frac{m}{2}}\right|=\frac{m}{2}$. By (A) $\operatorname{sgn}(C)=-1$ and since $\operatorname{sgn}\left(2 C_{\frac{m}{2}}\right)=1$ the walks

$$
W_{1}=C+\left(v_{0} v_{1} \cdots v_{j}\right)
$$

and

$$
W_{2}=2 C_{\frac{m}{2}}+\left(v_{0} v_{1} \cdots v_{j}\right)
$$

are a pair of SSSD walks with common length $m+j(\leq 2 n-1)$ from u to v. If m is odd, then since $m-3(\geq 4)$ is even and by (B) there is a cycle C_{m-3} in T_{n} where $d\left(C_{m-3}\right)=0,\left|C_{m-3}\right|=m-3$ and $\operatorname{sgn}\left(C_{m-3}\right)=1$. Also by (B) there is a cycle C_{3} in T_{n} where $d\left(C_{3}\right)=0,\left|C_{3}\right|=3$ and $\operatorname{sgn}\left(C_{3}\right)=-\operatorname{sgn}(C)$. Since $\operatorname{sgn}\left(C_{3}+C_{m-3}\right)=\operatorname{sgn}\left(C_{3}\right) \operatorname{sgn}\left(C_{m-3}\right)=$ $-\operatorname{sgn}(C)$ the walks

$$
W_{1}=C+\left(v_{0} v_{1} \cdots v_{j}\right)
$$

and

$$
W_{2}=C_{3}+C_{m-3}+\left(v_{0} v_{1} \cdots v_{j}\right)
$$

are a pair of SSSD walks with common length $m+j(\leq 2 n-1)$ from u to v.

If $d(C)=0$ and $|C|=5$, then by (B) there are cycles C_{3} and C_{4} in T_{n} where $d\left(C_{3}\right)=d\left(C_{4}\right)=0,\left|C_{3}\right|=3$ and $\left|C_{4}\right|=4$ such that $\operatorname{sgn}(C)=-\operatorname{sgn}\left(C_{3}\right)$. In this case we have $\operatorname{sgn}\left(C_{3}+C\right)=-1$ and so the walks

$$
W_{1}=C+C_{3}+\left(v_{0} v_{1} \cdots v_{j}\right)
$$

and

$$
W_{2}=2 C_{4}+\left(v_{0} v_{1} \cdots v_{j}\right)
$$

are a pair of SSSD walks with common length $8+j(\leq n+7)$ from u to v.

Let $d(C)=0$ and $|C|=4$. Since $n \geq 5$, there are cycles C_{3} and C_{5} in T_{n} with $d\left(C_{3}\right)=d\left(C_{5}\right)=0$ and $\left|C_{3}\right|=3$ and $\left|C_{5}\right|=5$.

If $\operatorname{sgn}\left(C_{3}\right)=\operatorname{sgn}\left(C_{5}\right)$, then $\operatorname{sgn}\left(3 C_{3}\right)=-\operatorname{sgn}\left(C_{5}+C\right)$. So the walks

$$
W_{1}=3 C_{3}+\left(v_{0} v_{1} \cdots v_{j}\right)
$$

and

$$
W_{2}=C_{5}+C+\left(v_{0} v_{1} \cdots v_{j}\right)
$$

are a pair of SSSD with common length $9+j(\leq n+8)$ from u to v. If $\operatorname{sgn}\left(C_{3}\right)=-\operatorname{sgn}\left(C_{5}\right)$, then $\operatorname{sgn}\left(C_{3}+C_{5}\right)=-\operatorname{sgn}(2 C)$. So the walks

$$
W_{1}=C_{3}+C_{5}+\left(v_{0} v_{1} \cdots v_{j}\right)
$$

and

$$
W_{2}=2 C+\left(v_{0} v_{1} \cdots v_{j}\right)
$$

are a pair of SSSD walks with common length $8+j(\leq n+7)$ from u to v.

Since T_{n} is a primitive tournament and $n \geq 5$, there is a closed walk of length l passing through u for each vertex u of T_{n} and $l \geq 3$. We obtain the following corollary.

Corollary 1. If $n \geq 5$, then the base $l\left(T_{n}\right)$ of the primitive nonpowerful signed tournament T_{n} of order n satisfies

$$
l\left(T_{n}\right) \leq \max \{2 n+2, n+11\} .
$$

The following examples reveal that the upper bound of the base given in Corollary 1 is extremal when $n \geq 5$ and $n \neq 5,7$.

Examples: Let $S_{n}=(V, A)$ be the signed tournament such that

$$
V=\{0,1, \ldots, n-1\}
$$

$$
A=\{(i, i+1) \mid 0 \leq i \leq n-2\} \bigcup\{(i, j) \mid 0 \leq j \leq i-2 \leq n-2\}
$$

1: For $n \geq 9$ if we assign 1 to each arc of S_{n} except $(n-1,0)$ to which we assign -1 , then there is no walk of length $2 n+1$ from 0 to $n-1$ with sign -1 . So the upper bound $2 n+2$ is extremal.
2: For $n=8$ if we assign 1 to each arc of S_{8} except the 7 arcs

$$
(7,4),(6,3),(5,2),(4,1),(3,0),(7,1),(6,0)
$$

to which we assign -1 , then there is no walk of length 18 from 0 to 7 with sign -1 . So the upper bound 19 is extremal.
3: For $n=7$ we assign 1 to each arc of S_{7} except $(6,2),(5,1),(4,0)$ to which we assign -1 , then there is no walk of length 16 from 0 to 6 with sign -1 . In this case there is a pair of SSSD walks of length 14 from 0 to 6 , so $l\left(S_{7}\right)=17=n+10$.
4: For $n=6$ we assign 1 to each arc of S_{6} except $(5,2),(4,1),(3,0)$ to which we assign -1 , then there is no walk of length 16 from 0 to 5 with sign -1 . So the upper bound 17 is extremal. Figure 1 displays the signed tournament S_{6}, in which the sign of the arcs with no symbols is 1 .

Figure 1. Signed tournament S_{6}
5: For $n=5$ we assign 1 to each arc of S_{5} except $(4,0)$ to which we assign -1 , then there is no walk of length 14 from 0 to 4 with sign -1 . In this case there is a pair of SSSD walks of length 12 from 0 to 4 , so $l\left(S_{5}\right)=15=n+10$.

References

[1] V. K. Balakrishnan, Graph theory, McGraw-Hill,N.Y., 1997.
[2] Y. Gao, Y. Huang and Y. Shao, Bases of primitive non-powerful signed symmetric digraphs with loops, Ars. Combinatoria 90 (2009), 383-388.
[3] B. Li, F. Hall and J. Stuart, Irreducible powerful ray pattern matrices, Linear Algebra and Its Appl., 342 (2002), 47-58.
[4] Q. Li and B. Liu, Bounds on the kth multi-g base index of nearly reducible sign pattern matrices, Discrete Math. 308 (2008), 4846-4860.
[5] J. Moon and N, Pullman, On the powers of tournament matrices, J. Comb. Theory 3 (1967), 1-9.
[6] Y. Shao and Y. Gao, The local bases of non-powerful signed symmetric digraphs with loops, Ars. Combinatoria 90 (2009), 357-369.
[7] B. Song and B. Kim, The bases of primitive non-powerful complete signed graphs, Korean J. Math. 22 (2014), 491-500.
[8] L. You, J. Shao and H. Shan, Bounds on the bases of irreducible generalized sign pattern matrices, Linear Algebra and Its Appl. 427 (2007), 285-300.

Byeong Moon Kim
Department of Mathematics
Gangneung-Wonju National University
Gangneung 210-702, Korea
E-mail: kbm@gwnu.ac.kr
Byung Chul Song
Department of Mathematics
Gangneung-Wonju National University
Gangneung 210-702, Korea
E-mail: bcsong@gwnu.ac.kr

[^0]: Received November 5, 2014. Revised January 23, 2015. Accepted January 23, 2015.

 2010 Mathematics Subject Classification: 05C20, 15B35.
 Key words and phrases: base, signed digraph, sign pattern matrix, tournament.

 * Corresponding author.
 *This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University.
 (c) The Kangwon-Kyungki Mathematical Society, 2015.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

