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THE BASKET NUMBERS OF KNOTS

Je-Jun Bang, Jun-Ho Do, Dongseok Kim∗, Tae-Hyung Kim,

and Se-Han Park

Abstract. Plumbing surfaces of links were introduced to study the
geometry of the complement of the links. A basket surface is one
of these plumbing surfaces and it can be presented by two sequen-
tial presentations, the first sequence is the flat plumbing basket code
found by Furihata, Hirasawa and Kobayashi and the second sequence
presents the number of the full twists for each of annuli. The min-
imum number of plumbings to obtain a basket surface of a knot is
defined to be the basket number of the given knot. In present arti-
cle, we first find a classification theorem about the basket number of
knots. We use these sequential presentations and the classification
theorem to find the basket number of all prime knots whose crossing
number is 7 or less except two knots 71 and 75.

1. Introduction

Orientable surfaces whose boundary is the given link, known as Seifert
surfaces have been studied for many interesting invariants of links such
as Seifert pairings, Alexander polynomials, signatures and etc. A plumb-

ing surface obtained from a 2-dimensional disc by plumbings annuli
found by Rudolph [20] used to study extensively for the fibreness of
links and surfaces [3–5, 8, 16, 19, 23]. Among these plumbing surfaces
the main focus of the present article is the basket surfaces, a precise
definition can be found in Definition 2.1.
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The third author’s first preprint about these plumbing surfaces from
a canonical Seifert surface had a critical mistake. In the process of
resolving this mistake, the third author have made a few results about
the banded surfaces and flat banded surfaces [15] and dipole graphs
which is also known as a braidzel surface [17], and a complete bipartite
graph K2,n [12]. The mistake was finally fixed in [11].

The present work is one of this series of articles presenting links as
a boundary of the surface obtained in a embedding of certain graphs as
described in [7]. One might consider these plumbing surfaces as special
embeddings of the bouquets of circles [6].

A sequence of articles by Hayashi and Wada [10], Furihata, Hirasawa
and Kobayashi [3] and the third author [11] deal with the flat plumbing
basket surface of a given link L. The work of Furihata et al. [3] provided
not only the existence theorem using a very tangible alternating defini-
tion of the flat plumbing basket surface but also a coding algorithm, the
resulting code is called flat plumbing basket code, to present links as the
boundaries of flat plumbing basket surfaces from a special closed braid
presentation of the link.

We generalize this presentation to find a new presentation for the bas-
ket surfaces as follow. These plumbing basket surface can be presented
by two sequential presentations, the first sequence is is the flat plumb-
ing basket code first found by Furihata et al. and the second sequence
presents the number of the full twists.

In present article, we use these sequential codes to find the bas-
ket number of all prime knots with 7 crossings or less except 71 and
75 by applying DT-notation and a computer program “knotfinder” of
Knotscape [24].

The outline of this paper is as follows. We first provide some pre-
liminary definitions and results in Section 2. We explained how two
sequential presentations present the basket surfaces. Also we provide
two classification theorems of the flat plumbing basket number of 0 and
2 with a explanation how we find DT-notation and use the computer
program “knotfinder” of Knotscape in Section 3. We conclude with a
remark on further research in Section 4.
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Figure 1. (i) A geometric shape of α,Bα and Cα on a
Seifert surface S and (ii) a new Seifert surface S obtained
from S by a top An plumbing along the path α.

2. Preliminaries

A compact orientable surface F is called a Seifert surface of a link L if
the boundary of F is isotopic to the given link L. The existence of such
a surface was first proven by Seifert using an algorithm on a diagram
of L, this algorithm was named after him as Seifert’s algorithm [22]. A
Seifert surface FL of an oriented link L produced by applying Seifert’s
algorithm to a link diagram is called a canonical Seifert surface.

The main topic of the article is the basket surfaces. Rudolph first
defined the top plumbing as follows. Let α be a proper arc on a Seifert
surface S. Let Bα be a 3-cell on top of S along a tubular neighborhood
Cα of α on S. Let An ⊂ Bα be an n times full twisted annulus such that
An∩∂Bα = Cα. The top plumbing on S along a path α is the new surface
S ′ = S∪Cα where An, Bα, Cα satisfy the previous conditions as depicted
in Figure 1. Thus, two consecutive plumbings are non-commutative in
general. Rudolph found a few interesting results with regards to the top
and bottom plumbings in [20]. For the rest of article, all plumbings are
top plumbing unless state differently.

Definition 2.1. A Seifert surface F is a basket surface if F = D2 or
if F = F0 ∗α An which can be constructed by plumbing An to a basket
F0 along a proper arc α ⊂ D2 ⊂ F0 where An is an annulus with n
full twists. We say that a surface F is a basket surface of a link L if
it is a basket surface and ∂F is equivalent to L. The minimum number
of plumbings among all basket surfaces of a link L is called the basket

number of the link L, denoted by bk(L).
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Figure 2. (a) A flat plumbing basket surface of the tre-
foil knot and (b) a flat plumbing basket surface of the
figure eight knot.

let us remark that if we only use untwisted annulus A0 for entire
plumbing, the resulting surface is called flat plumbing basket surface.
An alternative definition of the flat plumbing basket surfaces is given
in [3] and it is very easy to follow. The trivial open book decomposition

of R3 is a decomposition of R3 into the half planes in the following form.
In a cylindrical coordinate, it can be presented

R
3 =

⋃

θ∈[0,2π)

{(r, θ, z)|r ≥ 0, z ∈ R}

where {(r, θ, z)|r ≥ 0, z ∈ R} is called a page for θ ∈ [0, 2π). Let O
be the trivial open book decomposition of the 3-sphere S

3 which is ob-
tained from the trivial open book decomposition of R3 by the one point
compactification. A Seifert surface is said to be a flat plumbing basket
surface if it consists of a single page of O as a 2-disc D2 and finitely
many bands which are embedded in distinct pages [3]. Flat plumbing
basket surfaces of (i) the trefoil knot and (ii) the figure eight knot in
the trivial open book decomposition are depicted in Figure 2 where D2

is presented as a shaded rectangular region and the top horizontal line
of the rectangle is in the z-axis and the top hemi-spherical annuli are
contained in different pages. Furihata, Hirasawa and Kobayashi [3] in-
troduced a sequential presentation of these flat plumbing basket surfaces
by giving numbering on the boundary of the disc D2 where each of flat
annulus belongs to the pages in the trivial open book decomposition. For
example, the flat plumbing basket surface in Figure 2 (a) is presented
by 12341234 and 12431243 for (b).

A previous study by the third author found an upper bound for the
basket number of a link using a braid presentation of the link as follow.
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Figure 3. Basket surfaces of (a) the trefoil knot and (b)
the figure eight knot whose basket numbers are 2 [11].

Theorem 2.2. ([11]) Let L be a link which is the closure of a braid
β ∈ Bn where the length of the braid β is m. Then the basket number
of L is less than or equal to m− n + 1, i.e.,

bk(L) ≤ m− n+ 1.

Example 2.3. ([11]) The basket number of the trefoil knot and figure
eight knot is 2 as illustrated in Figure 3.

There are some articles which find the flat plumbing basket number
of knots [2, 9, 11, 13]. These numbers are obvious upper bounds for the
basket number of knots because the basket number is always less than
or equal to the flat plumbing basket number.

Let us explain rational tangle and rational link since out main result
involves with them. Rational knots and links comprise the simplest class
of links. The first twenty five knots, except for 85, are rational. Fur-
thermore all knots and links up to ten crossings are either rational or
are obtained by inserting rational tangles into a small number of pla-
nar graphs. Rational links are alternating with one or two unknotted
components, and they are also known in the literature as Viergeflechte,
four-plats or 2-bridge knots depending on their geometric representa-
tion [14].

The notion of a tangle was introduced in 1967 by Conway in his
work on enumerating and classifying knots and links, and he defined
the rational knots as numerator or denominator closures of the rational
tangles [1]. The following formula explain how to find the continued
fraction from rational tangle.



120 J.-J. Bang, J.-H. Do, D. Kim, T.-H. Kim, and S.-H. Park

Figure 4. Rational tangles (3, 2, 3, 1, 2) (left) and
(4, 1, 2, 0) (right).

(1) (qn, qn−1, . . . , q1) ∼ q = q1 +
1

q2 +
1

.. . +
1

qn

Theorem 2.4. ([1]) Two rational tangles are isotopic if and only if
they have the same continued fraction.

Schubert [21] originally stated the classification of rational knots and
links by representing them as 2-bridge links. Theorem 2.5 has hitherto
been proved by taking the 2-fold branched covering spaces of S3 along
2-bridge links, showing that these correspond bijectively to oriented dif-
feomorphism classes of lens spaces, and invoking the classification of
lens spaces [18] [14]. The following statement of Schubert’s theorem is a
formulation of the Theorem in the language of Conway’s tangles.

Theorem 2.5. ([14,21]) Suppose that rational tangles with continued

fractions p

q
and p′

q′
are given (p and q are relatively prime. Similarly for

p′ and q′.) If K(p
q
) and K(p

′

q′
) denote the corresponding rational knots

obtained by taking numerator closures of these tangles, then K(p
q
) and

K(p
′

q′
) are isotopic if and only if

1. p = p′ and
2. either q ≡ q′ mod p or qq′ ≡ 1mod p.
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3. The basket codes and results

Using the definition in the previous section, for a given link L, Furi-
hata et al. [3] found an algorithm to find a flat plumbing basket surface
from a closed braid β = L. Since we are dealing with basket surfaces,
we may choose twisted An plumbing instead of flat plumbings used for
flat plumbing basket surfaces.

The basket code of a basket surface is two sequences (a1a2 . . . a2m :
b1, b2, . . . , bm) where the first part a1a2 . . . a2m is the flat plumbing basket
code defined in [3] and modified in [2] and the second part b1, b2, . . . , bm
presents the number of full twists for annulus connecting two i which
appear exactly twice in the flat plumbing basket code. In fact, we per-
form Abi-plumbing which appears in i-th page of the trivial open book
decomposition.

Algorithm

• Step 1. For a give link L, we find its braid representation β, the
closed braid β = L.

• Step 2. Apply the method in [3] to obtain a basket surface F while
allowing either A2 or A−2 plumbings.

• Step 3. Find a basket code (a1a2 . . . a2m : b1, b2, . . . , bm) of the
basket surface.

This algorithm can be demonstrated in the following Example 3.1.
We recommend the reader to compare this with [2, Example 3.1] which
find a flat plumbing basket surface of the knot 52.

Example 3.1. A basket code of the knot 52 is (12341234 : 0, 0, 0, 1).

Proof. For the knot 52, we first present it as a closed braid

σ2σ
−1
1 (σ2)−3σ−1

1 on three strings as illustrated in Figure 5 (a). Although
theorem in [3] stated differently, one can choose any two generators of the
Artin’s braid group B3 as stated in [11, Theorem 4.10]. We choose the
first σ2σ

−1
1 to have a disc D which is the union of three discs, bounded

by three Seifert circles, joined by two half twisted bands presented by
σ2σ

−1
1 as indicated by the dashed purple line in Figure 5 (a). Since the

rest word (σ2)
−3σ−1

1 has the length 4 and (σ2)
−3 has the different sign

to σ2. we need three flat plumbings. However σ−1
1 has the same sign to

σ−1
1 , so we need A2-plumbing. Therefore, we find (12341234 : 0, 0, 0, 1)
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Figure 5. (a) The knot 52 as a closed braid, (b) a basket
surface of 52 for which the basket code is (12341234 :
0, 0, 0, 1).

as the basket code of the basket surface of knot 52 as depicted in Figure 5
(b).

Let us remark that the boundary of basket surfaces with a basket
number n has at most n+1 components, and the number of components
is always congruent to n + 1 modulo 2. Therefore, the basket numbers
of a knot have to be even.

Now, we will provide a classification theorem of knots and links by
the basket numbers.
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Figure 6. (a) The basket surface F of the basket code
(1212 : m,n), (b) the boundary of the surface F as a 2-
bridge knot and (c) the boundary of the surface F as a
rational knot.

Theorem 3.2. (1) A link L has the basket number 0 if and only if
L is the trivial knot.

(2) A knot K has the basket number 2 if and only if K is a rational
knot which is equivalent by Theorem 2.5 to a rational knot with

continued fraction of the form
4mn− 1

2n
for some integer m,n.

Proof. The first statement, link L has the basket number 0 if and
only if L is the trivial knot is very straightforward. For the case of the
basket number 2, there are four cases of the flat plumbing basket code
(1122), (2211), (1212) and (2121). The boundaries of the first two cases
are links. If we only consider the boundary of the basket surface, we
can rotate the first annulus to 360 degree so that the last cases are the
same. Thus we will concentrate the basket code of (1212 : m,n) where
m,n are integers.

One may easily find the isotopy between each knot diagrams in Fig-
ure 6. The knot diagram in Figure 6 (b) is a 2-bridge knot diagram and
the knot diagram in Figure 6 (c) is a rational knot, with rational tan-

gle (−2n)(2m) whose continued fraction is
4mn− 1

2n
. Since the isotopy

classes of rational knot are classified by Theorem 2.5, it completes the
proof.

By using algorithm explained in the beginning of the section, we find
the following theorem.

Theorem 3.3. The basket number of the prime knots up to 7 cross-
ings is given in Table 1.
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Name
of knot

Itscontinued
fraction

Basket
number

Basket Code

Unknot 0
31 3/1 2 (1212 : 1, 1)
41 5/2 2 (2121 : 1,−1)
51 5/1 4 (12341234 : −1,−1, 0, 0)
52 7/3 4 (1212 : −1,−2)
61 9/2 2 (2121 : −2, 1)
62 11/4 4 (12341234 : −1, 1, 1, 1)
63 13/5 4 (12431243 : −1,−1, 1, 1)
71 7/1 4− 6 (123456123456 : 1, 1, 1, 1, 1, 1)
72 11/5 2 (2121 : 3, 1)
73 13/4 4− 6 (123456123456 : 0, 0, 0, 0, 0, 1)
74 15/4 2 (2121 : 2, 2)
75 17/4 4− 6 (123456156234 : 0, 1, 1, 1, 1, 1)
76 19/7 4 (12431243 : 1,−1, 0,−1)
77 21/8 4 (12341234 : 1, 1,−1,−1)

Table 1. The basket number of the prime knots up to 7 crossings.

Proof. The knots 31, 41, 52, 61, 72 and 74 are all nontrivial and we have
found a basket code of length 2, thus, their basket number are 2 by
Theorem 3.2 (1). One the other hand, these basket code can be found
from their continued fractions using Theorem 2.5 as follows :

31 :
3

1
∼=

3

−2
=

4(−1)(−1)− 1

2(−1)

41 :
5

3
∼=

5

−2
=

−5

2
=

4(1)(−1)− 1

2(1)

52 :
7

3
∼=

7

−4
=

4(−2)(−1)− 1

2(−2)

61 :
9

2
∼=

9

−7
∼=

−9

7
∼=

−9

4
=

4(2)(−1)− 1

2(2)

72 :
11

5
∼=

11

−6
=

4(−3)(−1)− 1

2(−3)

74 :
15

4
=

4(2)(2)− 1

2(2)
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where ∼= presents one of two equivalent moves in Theorem 2.5.

One may observe that to change a given fraction
p

q
to

4mn− 1

2n
for

some integer m and n using a finite sequence of two equivalent moves
in Theorem 2.5, we have to obtain p ≡ 3 mod 4 or −p ≡ 3 mod 4.

Once we fix the numerator of
4mn− 1

2n
to be one of p or −p, we add

1 and factor the resulting integer into 4mn for some integer m and n.
If there exists a pair of m,n such that the denominator is of the form
2n by a finite sequence of two equivalent moves in Theorem 2.5, then
the corresponding knot has the basket number 2 and its basket code is
(1212 : m,n). Otherwise, the corresponding knot has the basket number
bigger than 2. Since |4mn − 1| > |2n| for nonzero m, we only need to
consider cases that the absolute value of the denominator to be less than
the absolute value of the numerator and to be even. So there are only
two possibilities for such denominator once we fix the numerator to be
congruent to 3 mod 4 unless its multiplicative inverse is itself modulo
the numerator. Using this idea we find the reminding knots can not have
the basket number 2 as follow :

51 :
5

1
∼=

5

−4
=

−5

4
6=

4mn− 1

2n

62 :
9

2
∼=

9

−7
=

−9

7
∼=

−9

4
and ∼=

−9

−2
6=

4mn− 1

2n

63 :
11

4
and ∼=

11

−8
6=

4mn− 1

2n

71 :
7

1
∼=

7

−6
=

−7

6
6=

4mn− 1

2n

73 :
13

4
=

−13

−4
and ∼=

−13

−10
6=

4mn− 1

2n

75 :
17

7
∼=

17

−10
=

−17

10
and ∼=

−17

−6
6=

4mn− 1

2n

76 :
19

7
∼=

19

−12
and ∼=

19

−8
6=

4mn− 1

2n

77 :
21

8
=

−21

−8
6=

4mn− 1

2n

It completes the proof of theorem.
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4. Conclusion

The most of works in the article were done in hand and reminder were
help by “knotfinder” of Knotscape. However, there is a written program
which produces DT-code of the knots which is the boundary of the flat
plumbing basket surfaces [2]. Y. Chung, the third author and B. Lee
are trying to modify it to make a new computer program which finds
DT-notations of the given basket code and will be used to identify its
corresponding knot using “knotfinder” of Knotscape.

Acknowledgments

The TEX macro package PSTricks [25] was essential for typesetting
the equations and figures. The third author was supported by Basic
Science Research Program through the National Research Foundation
of Korea(NRF) funded by the Ministry of Education, Science and Tech-
nology(2012R1A1A2006225).

References

[1] J. H. Conway, An enumeration of knots and links and some of their algebraic
properties, Proceedings of the conference on Computational problems in Ab-
stract Algebra held at Oxford in 1967, Pergamon Press, 329–358.

[2] Y. Choi, Y. Chung and D. Kim, The complete list of prime knots whose flat
plumbing basket numbers are 6 or less, preprint, arXiv:1408.3729.

[3] R. Furihata, M. Hirasawa and T. Kobayashi, Seifert surfaces in open books,
and a new coding algorithm for links, Bull. London Math. Soc. 40 (3) (2008),
405–414.

[4] D. Gabai, The Murasugi sum is a natural geometric operation, in: Low-
Dimensional Topology (San Francisco, CA, USA, 1981), Amer. Math. Soc.,
Providence, RI, 1983, 131–143.

[5] D. Gabai, The Murasugi sum is a natural geometric operation II, in: Combi-
natorial Methods in Topology and Algebraic Geometry (Rochester, NY, USA,
1982), Amer. Math. Soc., Providence, RI, 1985, 93–100.

[6] J. Gross, D. Robbins and T. Tucker, Genus distribution for bouquets of circles,
J. Combin. Theory B. Soc. 47 (3) (1989) 292–306.

[7] J. Gross and T. Tucker, Topological graph theory, Wiley-Interscience Series in
discrete Mathematics and Optimization, Wiley & Sons, New York, 1987.

[8] J. Harer, How to construct all fibered knots and links, Topology 21 (3) (1982)
263–280.



The basket numbers of knots 127

[9] S. Hirose and Y. Nakashima, Seifert surfaces in open books, and pass moves on
links, arXiv:1311.3383.

[10] C. Hayashi and M. Wada, Constructing links by plumbing flat annuli, J. Knot
Theory Ramifications 2 (1993), 427–429.

[11] D. Kim, Basket, flat plumbing and flat plumbing basket surfaces derived from
induced graphs, preprint, arXiv:1108.1455.

[12] D. Kim, The boundaries of dipole graphs and the complete bipartite graphs K2,n,
Honam. Math. J. 36 (2) (2014), 399–415, arXiv:1302.3829.

[13] D. Kim, A classification of links of the flat plumbing basket numbers 4 or less,
Korean J. of Math. 22 (2) (2014), 253–264.

[14] L. H. Kauffman and S. Lambropoulou, On the Classification of Rational Knots,
Adv. Appl. Math. 33 (2) (2004), 199–237.

[15] D. Kim, Y. S. Kwon and J. Lee, Banded surfaces, banded links, band indices
and genera of links, J. Knot Theory Ramifications 22(7) 1350035 (2013), 1–18,
arXiv:1105.0059.

[16] T. Nakamura, On canonical genus of fibered knot, J. Knot Theory Ramifications
11 (2002), 341–352.

[17] T. Nakamura, Notes on braidzel surfaces for links, Proc. of AMS 135 (2) (2007),
559–567.

[18] K. Reidemeister, Homotopieringe und Linsenräume, Abh. Math. Sem. Hansis-
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