DOI QR코드

DOI QR Code

Preparation of La0.5Nd0.5Ni5 Alloy by an Electrochemical Reduction in Molten LiCl

LiCl 용융염에서 전해환원법을 통한 La0.5Nd0.5Ni5 합금 제조

  • Lim, Jong Gil (Department of Chemical Engineering, Chungbuk National University) ;
  • Jeong, Sang Mun (Department of Chemical Engineering, Chungbuk National University)
  • 임종길 (충북대학교 화학공학과) ;
  • 정상문 (충북대학교 화학공학과)
  • Received : 2014.07.19
  • Accepted : 2014.09.22
  • Published : 2015.04.01

Abstract

The electrochemical behavior of $Nd_2O_3-La_2O_3-NiO$ mixed oxide including rare earth resources has been studied to synthesize $La_{0.5}Nd_{0.5}Ni_5$ alloy in a LiCl molten salt. The $Nd_2O_3-La_2O_3-NiO$ mixed oxide was converted to $NiNd_2O_4$ (spinel) and $LaNiO_3$ (perovskite) structures at a sintering temperature of $1100^{\circ}C$. The spinel and perovskite structures led a speed-up in the electrolytic reduction of the mixed oxide. Various reaction intermediates such as Ni, $NiLa_2O_4$ were observed during the electrochemical reduction by XRD analysis. A possible reaction route to $La_{0.5}Nd_{0.5}Ni_5$ in the LiCl molten salt was proposed based on the analysis result.

LiCl 용융염에서 희토류 금속을 포함한 $Nd_2O_3-La_2O_3-NiO$ 복합산화물의 전해환원을 통한 $La_{0.5}Nd_{0.5}Ni_5$ 합금제조에 대한 연구를 수행하였다. $Nd_2O_3-La_2O_3-NiO$ 복합산화물은 $1100^{\circ}C$에서 소결시에 $NiNd_2O_4$ (스피넬)과 $LaNiO_3$ (페로브스카이트) 구조가 생성되었다. 스피넬 및 페로브스카이트 구조는 복합산화물의 전해환원 반응속도를 증가시켰다. LiCl 용융염에서 전해환원 반응 동안 $Nd_2O_3-La_2O_3-NiO$ 복합산화물은 Ni, $NiLa_2O_4$ 등의 다양한 중간생성물을 거쳐 $La_{0.5}Nd_{0.5}Ni_5$ 합금으로 환원됨을 확인할 수 있었다. XRD 분석결과를 통해 최종 생성물인 $La_{0.5}Nd_{0.5}Ni_5$의 생성 메카니즘을 제시하였다.

Keywords

References

  1. Schlapbach, L. and Zuttel, A., "Hydrogen-storage Materials for Mobile Applications," Nature., 414(6861), 353-358(2001). https://doi.org/10.1038/35104634
  2. Tliha, M., Mathlouthi, H., Lamloumi, J. and Percheron-Guegan, A., "Electrochemical Kinetic Parameters of a Metal Hydride Battery Electrode," Int. J. Hydrog. Energy, 32(5), 611-614(2007). https://doi.org/10.1016/j.ijhydene.2006.05.019
  3. Zhao, B., Wang, L., Dai, L., Cui, G., Zhou, H. and Kumar R., "Direct Electrolytic Preparation of Cerium/nickel Hydrogen Storage Alloy Powder in Molten Salt," J. Alloys Compd., 468(1), 379-385(2009). https://doi.org/10.1016/j.jallcom.2008.01.074
  4. Drasner, A. and Blazina, Z., "The Effect of Substitution of ga for ni on the Hydrogen Sorption Properties of $NdNi_5$," J. Alloys Compd., 381(1), 188-191(2004). https://doi.org/10.1016/j.jallcom.2004.03.106
  5. Zhu, Y., Wang, D., Ma, M., Hu, X., Jin, X. and Chen, G. Z., "More Affordable Electrolytic $LaNi_5$-type Hydrogen Storage Powders," Chem. Commun., 2515-2517(2007).
  6. Yoon, H. S., Kim, C. J., Chung, K. W., Lee, S. J., Joe, A. R., Shin, Y. H., Lee, S. I., Yoo, S. J. and Kim, J. G., "Leaching Kinetics of Neodymium in Sulfuric Acid from E-scrap of NdFeB Permanent Magnet," Korean J. Chem. Eng., 31(4), 706-711(2014). https://doi.org/10.1007/s11814-013-0259-5
  7. Nam, S. U. and Paik, Y. H., "A Study on the Production of Nd- Fe Mother Alloy from $Nd_2O_3$ by the Molten Salt Electrolysis," J. Korean Inst. Met. Mater., 31(9), 1156-1161(1993).
  8. Choi, E. Y., Hur, J. M., Choi, I. S., Kwon, S. G., Kang, D. S., Hong, S. S., Shin, H. S., Yoo, M. A. and Jeong, S. M., "Electrochemical Reduction of Porous 17 kg Uranium Oxide Pellets by Selection of an Optimal Cathode/anode Surface Area Ratio," J. Nucl. Mater., 418(1), 87-92(2011). https://doi.org/10.1016/j.jnucmat.2011.08.001
  9. Choi, E. Y., Hong, S. S. Park, . Im, H. S., Oh, S. C., Won, C. Y., Cha, J. S. and Hur, J. M., "Electrochemical Reduction Process for Pyroprocessing," Korean Chem. Eng. Res., 52(3), 279-288(2014). https://doi.org/10.9713/kcer.2014.52.3.279
  10. Ryu, H. Y., Jeong, S. M. and J. G. Kim, "Electrochemical Behavior of $Mg^{2+}$ ions in $MgCl_2-CaCl_2-NaCl$ Molten Salt," Korean Chem. Eng. Res., 50(6) 939-944(2012).
  11. Chen, G. Z., Fray, D. J. and Farthing, T. W., "Direct Electrochemical Reduction of Titanium Dioxide to Titanium in Molten Calcium Chloride," Nature, 407(6802), 361-364(2000). https://doi.org/10.1038/35030069
  12. Ma, M., Wang, D., Wang, W., Hu, X., Jin, X. and Chen, G. Z., "Extraction of Titanium From Different Titania Precursors by the FFC Cambridge Process," J. Alloys Compd., 420(1), 37-45 (2006). https://doi.org/10.1016/j.jallcom.2005.10.048
  13. Chen, G. and Fray, D., "Understanding the Electro-reduction of Metal Oxides in Molten Salts," Light Metals 881-886(2004).
  14. Qiu, G., Feng, X., Liu, M., Tan, W. and Liu, F., "Investigation on Electrochemical Reduction Process of $Nb_2O_5$ Powder in Molten $CaCl_2$ with Metallic Cavity Electrode," Electrochim. Acta., 53(12), 4074-4081(2008). https://doi.org/10.1016/j.electacta.2007.10.002
  15. Kim, P., Xie, H., Zhai, Y., Zou, X. and Lang, X., "Direct Electrochemical Reduction of $Dy_2O_3$ in $CaCl_2$ Melt," J. Appl. Electrochem., 42(4), 257-262(2012). https://doi.org/10.1007/s10800-012-0392-6
  16. Ji, H. S., Ryu, H. Y., Jeong, S. M. and Cho, S. W, "Fast Electrochemical Synthesis of $NdNi_5$ Hydrogen Storage Alloy in Molten Salt," Chem. Lett., 42(10), 1182-1184(2013). https://doi.org/10.1246/cl.130538
  17. Abdelkader, A. M., Hyslop, D. J. S., Cox, A. and Fray, D. J., "Electrochemical Synthesis and Characterization of a $NdCo_5$ Permanent Magnet," J. Mater. Chem., 20, 6039-6049(2010). https://doi.org/10.1039/c0jm00096e
  18. Zhang, Y., Yin, H., Zhang, S., Tang, D., Yuan, Z., Yan, T., Zheng, W. and Wang, D., "Preparation of $CeNi_2$ Intermetallic Compound by Direct Electro Reduction of Solid $CeO_2$-2NiO in Molten LiCl," J. Rare Earths., 30(9), 923-927(2012). https://doi.org/10.1016/S1002-0721(12)60155-0
  19. Kim, D. S., Cho, P. S., Lee, J. H., Kim, D. Y. and Lee, S. B., "Improvement of Grain-boundary Conduction in Gadolinia-doped Ceria Via Post-sintering Heat Treatment," Solid State Ion., 177(19), 2125-2128(2006). https://doi.org/10.1016/j.ssi.2005.12.014

Cited by

  1. LiCl 용융염에서 NiO를 혼합한 희토류 산화물의 파이로 전해환원 특성 vol.55, pp.3, 2015, https://doi.org/10.9713/kcer.2017.55.3.379