DOI QR코드

DOI QR Code

Evaluation of Local Damage of SC Wall using Local Collision Simulation

국부충돌해석에 의한 SC벽체의 국부손상 평가

  • 우동인 (단국대학교 토목환경공학과) ;
  • 정철헌 (단국대학교 토목환경공학과)
  • Received : 2014.07.07
  • Accepted : 2015.01.22
  • Published : 2015.04.01

Abstract

The structural safety of nuclear power plant against impact from aircraft crash has been performed so far in two viewpoints such as local behavior and global behavior, and the local behavior has been evaluated using local damage evaluation formulas suggested based on the results of experimental data of RC (Reinforcement Concrete) wall. However, few data have been collected from recent research to evaluate the local behavior and damage of SC (Steel plate reinforced Concrete) wall, which is recently applied to the newly designed nuclear power plant. In this study, local damages of SC wall and RC wall against an idealized aircraft engine projectile impact are evaluated through FE simulation analyses with various wall thicknesses and steel ratio. Through analysis of local collision simulation results of SC and RC wall, the penetration depth of SC wall and RC wall are compared.

지금까지 항공기 충돌에 대한 안전성 검토는 국부거동 및 전반거동으로 나뉘어 검토되어 왔으며, 이 중 국부거동의 평가는 RC (Reinforcement Concrete)벽체를 대상으로 실험에 기초하여 제시된 국부손상 평가식을 사용하여 검토되었다. 그러나 최근 적용이 시작된 SC (Steel plate reinforced Concrete)벽체의 항공기 충돌에 대한 국부적인 거동 및 손상을 평가할 수 있는 자료는 거의 없는 실정이다. 본 연구에서는 연성 충격체인 이상화된 항공기 엔진을 대상으로 콘크리트 벽체의 두께 및 강판의 강재비를 변수로 충돌해석을 수행하여 SC벽체 및 RC벽체의 국부손상을 평가하였다. SC벽체 및 RC벽체에 대한 충돌해석결과로부터 국부손상에서 나타나는 관입깊이를 상호 비교분석하였다.

Keywords

References

  1. CEB (Comite Euro-international du Beton) (1993). CEB-FIP Model Code.
  2. Choi, H., Chung, C. H., Yoo, H. K. and Kim, S. Y. (2011). "Effect of reinforcement ratio and impact velocity on local damage of RC slabs." Journal of the Korean Society of Civil Engineers, Vol. 31, No. 4A, pp. 311-321 (in Korean).
  3. Korea Institute of Nuclear Safety (KINS) (2005). Resistance ability evaluation of safety-related structures for the simulated aircraft accident, KINS/HR-654 (in Korean).
  4. Korea Institute of Nuclear Safety (KINS) (2011). Validation of the aircraft crash assessment method using numerical simulation, KINS/HR-1072 (in Korean).
  5. Kojima, I. (1991). "An experimental study on local behaviour of reinforced concrete slabs to missile impact." Nuclear Engineering and Design, Vol. 130, pp. 121-132. https://doi.org/10.1016/0029-5493(91)90121-W
  6. Li, Q. M. and Chen X. W. (2003). "Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile." International Journal of Impact Engineering, Vol. 28, No. 1, pp. 93-116. https://doi.org/10.1016/S0734-743X(02)00037-4
  7. Livemore Software Technology Corporation (LSTC) (2007). LS-DYNA keyword user's manual, California.
  8. Mizuno, J., Koshika, N., Morikawa, H., Wakimoto, K., Kobayashi, K. and Fukuda, R. (2005). "Investigation on impact resistance of steel plate reinforced concrete barriers against aircraft impact: Part 2. Simulation Analyses of Scale Model Impact Tests." Transactions of the 18th International Conference on Structural Mechanics in Reactor Technology SMiRT-18, Vol. J J05-2, pp. 2580-2590.
  9. Morikawa, H., Mizuno, J., Momma, T., Fukuda, R., Tajeuchi, M. and Shikama Y. (1999). "Scale model tests of multiple barriers against aircraft impact: Part 2. Simulation Analyses of Scale Model Impact Tests." Transactions of the 15th International Conference on Structural Mechanics in Reactor Technology SMiRT-15, Vol. 4, pp. 145-152.
  10. Sliter, G. E. (1980). "Assessment of empirical concrete impact formulas." Journal of the Structural Division, ASCE, Vol. 106, No. 5, pp. 1023-1045.
  11. Su. X. Y., Yu, T. X. and Reid, S. R. (1995). "Inertia-Sensitive impact energy-Absorbing structures Part II: Effect of Strain Rate." International Journal of Impact Engineering, Vol. 16, No. 4, pp. 673-689. https://doi.org/10.1016/0734-743X(94)00062-2
  12. Sugano, T., Tsubota, H., Kasai, Y., Koshika, N., Orui, S., Riesemenn von, W. A., Bickel, D. C. and Parks, M. B. (1993a). "Full-scale aircraft impact test for evaluation of impact force." Nuclear Engineering and Design, Vol. 140, pp. 373-385. https://doi.org/10.1016/0029-5493(93)90119-T
  13. Sugano, T., Tsubota, H., Kasai, Y., Koshika, N., Ohnuma, H., Riesemenn von, W. A., Bickel, D. C. and Parks, M. B. (1993b). "Local damage to reinforced concrete structures caused by impact of aircraft engine missiles. Part 1. Test program, method and results." Nuclear Engineering and Design, Vol. 140, pp. 387-405. https://doi.org/10.1016/0029-5493(93)90120-X
  14. Walter, T. A. and Wolde-Tinsae, A. M. (1984). "Turbine missile perforation of reinforced concrete." Journal of the Structural Division, ASCE, Vol. 110, No. 10, pp. 2439-2455. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:10(2439)