DOI QR코드

DOI QR Code

Evaluation of Heat Exchange Efficiency and Applicability for Parallel U-type Cast-in-place Energy Pile

병렬 U형 현장타설 에너지파일의 열교환 효율 및 적용성 평가

  • 박상우 (고려대학교 건축사회환경공학부) ;
  • 김병연 (고려대학교 건축사회환경공학부) ;
  • 성치훈 (고려대학교 건축사회환경공학부) ;
  • 최항석 (고려대학교 건축사회환경공학부)
  • Received : 2014.08.22
  • Accepted : 2015.02.06
  • Published : 2015.04.01

Abstract

An energy pile is one of the novel ground heat exchangers (GHEX's) that is a economical alternative to the conventional closed-loop vertical GHEX. The combined system of both a structural foundation and a GHEX contains a heat exchange pipe inside the pile foundation and allows a working fluid circulating through the pipe, inducing heat exchange with the ground formation. In this paper, a group of energy piles equipped with parallel U-type (5, 8 and 10 pairs) heat exchange pipes was constructed in a test-bed by fabricating in large-diameter cast-in-place concrete piles. In addition, a closed-loop vertical GHEX with 30m depth was constructed nearby to conduct in-situ thermal response tests (TRTs) and to compare with the thermal performance of the cast-in-place energy piles. A series of thermal performance tests was carried out with application of an artificial cooling and heating load to evaluate the heat exchange rate of energy piles. The applicability of cast-in-place energy piles was evaluated by comparing the relative heat exchange efficiency and heat exchange rate with preceding studies. Finally, it is concluded that the cast-in-place energy piles constructed in the test-bed demonstrate effective and stable thermal performance compared with the other types of GHEX.

에너지파일은 기존의 수직밀폐형 지중열교환기를 경제적으로 대체할 수 있는 새로운 형태의 지중열교환기이다. 즉, 에너지파일은 건물의 기초 구조물과 지중열교환기의 역할을 동시에 수행하는 에너지 구조체로서, 말뚝 기초 내부에 열교환 파이프를 삽입하고 파이프를 통해 유체를 순환시켜 지반과의 열교환을 유도한다. 본 연구에서는 병렬 U형(5쌍, 8쌍, 10쌍)의 열교환 파이프를 대구경 현장타설 에너지파일에 삽입하여, 3본의 에너지파일을 실규모로 시공하였다. 또한 현장 열응답 시험(In-situ thermal response tests, TRTs)을 수행하고 시공된 현장타설 에너지파일과의 열교환 효율을 비교하기 위하여 30m 깊이의 수직밀폐형 지중열교환기를 별도로 시공하였다. 병렬 U형 현장타설 에너지파일에 대해서는 냉난방 부하를 인공적으로 주입하는 열교환 성능 평가시험을 수행하여 열교환 성능(heat exchange rate)을 평가하였다. 마지막으로 현장타설 에너지파일의 적용성 평가를 위해 산정된 상대 열교환 효율(relative heat exchange efficiency) 및 열교환 성능을 선행 연구 결과와 비교하였으며, 본 연구에서 시공된 현장타설 에너지파일은 안정적이고 효율적인 열성능을 보이는 것으로 나타났다.

Keywords

References

  1. Bourne-Webb, P. J., Amatya, B., Soga, K., Amis, T., Davidson, C. and Payne, P. (2009). "Energy pile test at Lambeth College, London: Geotechnical and Thermodynamic Aspects of Pile Response to Heat Cycles." Geotechniques, Vol. 59, No. 3, pp. 237-248. https://doi.org/10.1680/geot.2009.59.3.237
  2. Brandl, H. (2006). "Energy foundation and other thermo-active ground structures." Geotechniques, Vol. 56, No. 2, pp. 81-122. https://doi.org/10.1680/geot.2006.56.2.81
  3. Carslaw, S. H. and Jaeger, J. C. (1959). Conduction of Heat in Solids, Second Ed., Claremore Press, Oxford.
  4. Cui, P., Li, X., Man, Y. and Fang, Z. (2011). "Heat transfer analysis of pile geothermal heat exchangers with spiral coils." Applied Energy, Vol. 88, No. 11, pp. 4113-4119. https://doi.org/10.1016/j.apenergy.2011.03.045
  5. Gao, J., Zhang, X., Liu, J., Li, K. and Yang, J. (2008). "Numerical and experimental assessment of thermal performance of vertical energy piles." Applied Energy, Vol. 85, pp. 901-910. https://doi.org/10.1016/j.apenergy.2008.02.010
  6. Hamada, Y., Saitoh, H., Nakamura, M., Kubota, H. and Ochifuji, K. (2007). "Field performance of an energy pile system for space heating." Energy and Building, Vol. 39, pp. 517-524. https://doi.org/10.1016/j.enbuild.2006.09.006
  7. Ingersoll, L. R., Zobel, O. J. and Ingersoll, A. C. (1954). Heat conduction with engineering, geological and other application, McGraw-Hill, New York.
  8. Jalaluddin, Akio Miyara, Koutaro Tsubaki, Shuntaro Inoue and Kentaro Yoshida (2011). "Experimental study of several types of ground heat exchanger using a steel pile foundation." Renewable Energy, Vol. 36, No. 2, pp. 764-771. https://doi.org/10.1016/j.renene.2010.08.011
  9. Johnston, I. W., Narsillio, G. A. and Colls, S. (2011). "Emerging geothermal energy technologies." KSCE Journal of Civil Engineering, Vol. 15, No. 4, pp. 643-653. https://doi.org/10.1007/s12205-011-0005-7
  10. Jun, L., Zhang, X., Gao, J. and Yang, J. (2009). "Evaluation of heat exchange rate of GHW in geothermal heat pump system." Renewable Energy, Vol. 34, pp. 2898-2904. https://doi.org/10.1016/j.renene.2009.04.009
  11. Laloui, L., Moreni, M. and Vulliet, L. (2003). "Behavior of a dualpurpose pile as foundation and heat exchanger." Canadian Geotechnical Journal, Vol. 40, No. 2, pp. 388-402. https://doi.org/10.1139/t02-117
  12. Laloui, L., Nuth M. and Vulliet, L. (2006). "Experimental and numerical investigations of the behavior of a heat exchanger pile." International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 30, pp. 763-781. https://doi.org/10.1002/nag.499
  13. Lee, C., Park, M., Park, S., Won, J. and Choi, H. (2013). "Backanalyses of in-situ thermal response test (TRT) for evaluating ground thermal conductivity." International Journal of Energy Research, Vol. 37, No. 11, pp. 1397-1404. https://doi.org/10.1002/er.2929
  14. Lee, C., Park, S., Won, J., Jeoung, J., Sohn, B. and Choi, H. (2012). "Evaluation of thermal performance of energy textile installed in tunnel." Renewable Energy, Vol. 42, pp. 11-22. https://doi.org/10.1016/j.renene.2011.09.031
  15. Lee, S. J., Min, H. S., Song, J. Y. and Jeong, S. S. (2010). "Thermal influential factors of energy pile." Journal of Korean Society of Civil Engineering, Vol. 30, No. 6C, pp. 231-239.
  16. Li, X., Chen, Y., Chen, Z. and Zhao, J. (2006). "Thermal performances of different types of underground heat exchangers." Energy and Building, Vol. 38, pp. 543-547. https://doi.org/10.1016/j.enbuild.2005.09.002
  17. Man, L., Yang, H., Diao, N., Liu, J. and Fang, J. (2010). "A new model and analytical solutions for borehole and pile ground heat exchangers." International Journal of Heat and Mass Transfer, Vol. 53, pp. 2593-2061. https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.001
  18. Markiewicz, R. (2004). Umerische und experimentelle Untersuchungen zur Nutzung von geothermischer Energie mittels erdberührter Bauteile und Neuentwicklungen für den Tunnelbau, Ph.D. Thesis, Technical Univ. of Vienna (in Austrian).
  19. Mogensen, P. (1983). "Fluid to duct wall heat transfer in duct system storages." Proceedings of the International Conference on Suvsurface Heat Storage in Theory and Practice, Swedish Council for Building Research, June 6-8.
  20. Monique de Moel, P. M., Bach, A. B., Rao, M. S., JingLiang, O. S. (2010). "Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia." Renewable and Sustainable Energy Reviews, Vol. 14, No. 9, pp. 2683-2696. https://doi.org/10.1016/j.rser.2010.07.027
  21. Morino, K. and Oka, T. (1994). "Study on heat exchanged in soil by circulating water in a steel pile." Energy and Buildings, Vol. 21, No. 1, pp. 65-78. https://doi.org/10.1016/0378-7788(94)90017-5
  22. Nagano, K. (2007). "Energy pile system in new building of sapporo city university." Thermal Energy Storage for Sustainable Energy Consumption, Vol. 234, pp. 245-253 https://doi.org/10.1007/978-1-4020-5290-3_16
  23. Nam, Y., Hwang, S. and Ooka, R. (2007). "Geothermal heat pump system using foundation pile structures." Journal of Korea Society of Geothermal Energy Engineers, Vol. 3, No. 1, pp. 51-60.
  24. Pahud, D. and Hubbuck, M. (2007). "Measured thermal performances of the energy pile system of the duck midfield as Zurick airport." Proceedings European Geothermal Congress 2007; Unterhaching, Germany, 30 May-1 June.
  25. Park, M., Lee, C., Park, S., Sohn, B. and Choi, H. (2012). "Evaluation of ground thermal conductivity by performing in-situ thermal response test (TRT) and CFD back-analysis." Journal of Korean Geotechnical Society, Vol. 28, No. 12, pp. 5-15. https://doi.org/10.7843/kgs.2012.28.12.5
  26. Park, S., Sohn, J. R., Park, Y. B., Ryu, H. K. and Choi, H. (2013). "Study on thermal behavior and design method for coil-type PHC energy pile." Journal of Korean Geotechnical Society, Vol. 29, No. 8, pp. 37-51. https://doi.org/10.7843/kgs.2013.29.8.37
  27. Park, Y. B., Park, J. B. and Lim, H. S. (2007). "Construction method of ground heat exchanger using energy pile in ground source heat system." Journal of Korean Society of Civil Engineering, Vol. 55, No. 7, pp. 41-46.
  28. Salomone, L. A. and Marlowe, J. I. (1989). Soil and rock classification according to thermal conductivity : Design of Ground-coupled Heat Pump Systems : Final Report, Electric Power Research Inst. (EPRI), EPRI-CU-6482.
  29. Sekine, K., Shiba, Y., Ooka, R., Hwang, S. H. and Yokoi, M. (2007). "Development of a ground-source heat pump system with ground heat exchanger utilizing the cast-in-place concrete pile foundations of buildings." ASHRAE Transactions, pp. 558-566.
  30. Sharqawy, M. H., Mokheimer, E. M., Habib, M. A., Badr, H. M., Said, N. A. and Al-Shayea, S. A. (2009). "Energy, energy and uncertainty analyses of the thermal response test for a ground heat exchanger." International Journal of Energy Research, Vol. 33, pp. 582-592. https://doi.org/10.1002/er.1496
  31. Wagner, R. and Clauser, C. (2005). "Evaluating thermal response tests using parameter estimation for thermal conductivity and thermal capacity." Journal of Geophysics and Engineering, Vol. 2, pp. 349-356. https://doi.org/10.1088/1742-2132/2/4/S08
  32. Wood, C. J., Liu, H. and Riffat, S. B. (2009). "Use of energy piles in a residential building, and effects on ground temperature and heat pump efficiency." Geotechniques, Vol. 59, No. 3, pp. 287-290. https://doi.org/10.1680/geot.2009.59.3.287
  33. Yu, H. K. (2008). "Development and performance evaluation of ground heat exchanger utilizing PHC pile foundation of building." Journal of the Korean Solar Energy Society, Vol. 28, No. 5, pp. 56-64.