DOI QR코드

DOI QR Code

Effects of Sub Minimal Inhibitory Concentration of Metronidazole and Penicillin on Morphology of Aggregatibacter actinomycetemcomitans: Scanning Electron Microscopy Observation

  • Kwon, Ye Won (Department of Oral Microbiology, College of Dentistry, Research Institute of Oral Science, Gangneung-Wonju National University) ;
  • Lee, Si Young (Department of Oral Microbiology, College of Dentistry, Research Institute of Oral Science, Gangneung-Wonju National University)
  • Received : 2015.02.26
  • Accepted : 2015.03.13
  • Published : 2015.03.31

Abstract

Minimal inhibitory concentration (MIC) is the lowest concentration of antibiotics that inhibits the visible growth of bacteria. It has been reported that sub-MIC of antibiotics may result in morphological alterations, along with the biochemical and physiological changes in bacteria. The purpose of this study was to examine morphological changes of Aggregatibacter actinomycetemcomitans, after the treatment with sub-MIC metronidazole and penicillin. The bacterial morphology was observed with scanning electron microscope, after incubating with sub-MIC antibiotics. The length of A. actinomycetemcomitans was increased after the incubation with sub-MIC metronidazole and penicillin. Sub-MIC metronidazole and penicillin inhibited bacterial division and induced long filaments. Our study showed that metronidazole and penicillin can induce the morphological changes in A. actinomycetemcomitans.

Keywords

References

  1. Lorian V. Effects of low antibiotic concentration on bacteria: Effects on ultrastructure, their virulence and susceptibility to mimunodefenses, pp. 493-555, Antibiotics in Laboratory Medicine, 1986;2th.
  2. Kwon YW, Lee SY. Effect of sub-minimal inhibitory concentration antibiotics on morphology of periodontal pathogens. Int J Oral Biol. 2014;39:115-120. doi : http://dx.doi.org/10.11620/IJOB.2014.39.2.115.
  3. Ricahrd J, Lamont, Howard F, Jenkinson. Virulence factors of periodontal bacteria, pp 50-51, Oral microbiology at a glance, 2010.
  4. Ellis LF, Herron DK, Preston DA, Simmons LK, Schlegel RA. Evaluation of antibiotic efficacy using electron microscopy: Morphological effects of guanylureido cephalosporin, chlorobenzoylureido cephalosporin, BL- P1654, and carbenicillin on Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1976;9:334-342. https://doi.org/10.1128/AAC.9.2.334
  5. Greenwood D, F. O. Acomparison of the effects of ampicillin on Escherichia coli and Proteus mirabilis. J Med Microbiol. 1969;2:435-441. https://doi.org/10.1099/00222615-2-4-435
  6. Greenwood D, F. O. Comparison of the responses of Escherichia coli and Proteus mirabilis to seven B-lactam antiviotics. J Infect Dis. 1973;128:211-222. https://doi.org/10.1093/infdis/128.2.211
  7. de Souza Filho JA, Diniz CG, Barbosa NB, de Freitas MC, Lopes Neves MS, da Gama Mazzei RN, Gameiro J, Coelho CM, da Silva VL. Morphological, biochemical, physiological and molecular aspects of the response of Fusobacterium nucleatum exposed to subinhibitory concentrations of antimicrobials. Anaerobe. 2012;18: 566-575. doi: http://dx.doi.org/10.1016/j.anaerobe.2012.09.007.
  8. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, M07-A8, vol.29, no.2, 8th ed., CLSI. Wayne, PA, 2009.
  9. Sbordone L, Barone A, Ramaglia L, Ciaglia RN, Iacono VJ. Antimicrobial susceptibility of periodontopathic bacteria associated with failing implants. J Periodontol. 1995;66:69-74. https://doi.org/10.1902/jop.1995.66.1.69
  10. Burdett ID, Murray RG. Septum formation in Escherichia coli: Characterization of septal structure and the effects of antibiotics on cell division. J Bacteriol. 1974;119: 303-324.
  11. Guze L,B. Microbial protoplasts, spheroplasts and L-forms. pp. 181-182, Williams and Wilkins, Baltimore, 1968;122.
  12. Braga PC, Sasso MD, Sala MT. Sub-MIC concentrations of cefodizime interfere with various factors affecting bacterial virulence. J Antimicrob Chemother. 2000;45: 15-25. doi:10.1093/jac/45.1.15.
  13. Svanborg-Eden C, Sandberg T, Alestig K. Decrease in adhesion of Escherichia coli to human urinary tract epithelial cells in vitro by subinhibitory concentrations of ampicillin. Infection. 1978;6(Issue 1 supplement):S121-S124. https://doi.org/10.1007/BF01646082
  14. Lorian V. Abnormal forms of bacteria. Mt Sinai J Med. 1976;43:762-775.
  15. Fleming A, Voureka A, Kramer IR, Hughes WH. The morphology and motility of Proteus vulgaris and other organisms cultured in the presence of penicillin. J Gen Microbiol. 1950;4:257-269. https://doi.org/10.1099/00221287-4-2-257
  16. Brzin B. Unusual cell form of bacterium anitratum produced by sulfonamides. Experientia. 1966;22:149-150. https://doi.org/10.1007/BF01897699
  17. Goss WA, Deitz WH, Cook TM. Mechanism of action of nalidixic acid on Escherichia coli. J Bacteriol. 1964;88: 1112-1118.
  18. Lorian V, Popoola B. The effect of nitrofurantoin on the morphology of gram-negative bacilli. J Infect Dis. 1972;125:187-189. https://doi.org/10.1093/infdis/125.2.187
  19. Hancock R, Park JT. Cell-wall synthesis by Staphylococcus aureus in the presence of chloramphenicol. Nature. 1958;181:1050-1052. https://doi.org/10.1038/1811050a0
  20. Ofek I, Beachey EH, Eisenstein BI, Alkan ML, Sharon N. Suppression of bacterial adherence by subminimal inhibitory concentrations of beta-lactam and aminoglycoside antibiotics. Rev Infect Dis. 1979;1:832-837. https://doi.org/10.1093/clinids/1.5.832
  21. Fonseca AP, Extremina C, Fonseca AF, Sousa JC. Effect of subinhibitory concentration of piperacillin/tazobactam on Pseudomonas aeruginosa. J Med Microbiol. 2004;53: 903-910. doi: 10.1099/jmm.0.45637-0.