DOI QR코드

DOI QR Code

고지향 수중 통신을 위한 파라메트릭 어레이 트랜스듀서의 설계 및 개발 연구

Design and Development Research of a Parametric Array Transducer for High Directional Underwater Communication

  • 황용환 (포항공과대학교 기계공학과) ;
  • 제엽 (국방과학연구소) ;
  • 문원규 (포항공과대학교 기계공학과)
  • 투고 : 2014.09.11
  • 심사 : 2015.01.16
  • 발행 : 2015.03.31

초록

파라메트릭 어레이(parametric array)는 매질의 비선형성을 이용하여 고지향성 저주파를 발생시키는 현상이다. 발생된 저주파는 직접 발생된 1차 음파에 비해 음압이 상대적으로 매우 작다. 따라서 강력한 1차 음파를 지향성 있게 발생시킬 수 있는 트랜스듀서가 필수적으로 요구된다. 본 논문에서는 파라메트릭 어레이를 위한 음원으로써 다공진 트랜스듀서의 설계, 제작, 시험평가에 대해 연구하였다. 유닛 트랜스듀서 및 배열 트랜스듀서의 설계를 해석 모델에 근거하여 수행하였으며, 이 과정을 반복하여 최적의 트랜스듀서를 제작하였다. 제작된 배열 트랜스듀서는 6.3 m 거리에서 각각 189 dB, 190 dB의 1차 음파를 확인하였으며, 파라메트릭 어레이 현상을 이용하여 136 dB의 차주파수음 발생을 확인하였다. 차주파수음은 $12{\times}18{\times}10m$크기의 수조에서 15 kHz, $8^{\circ}$ half power beamwidth의 고지향성 저주파 특성을 가지고 있음을 확인하였다.

A parametric array is a nonlinear phenomenon that generates a narrow beam of low-frequency sound using the nonlinearity of the medium. The low-frequency sound so generated has a low sound pressure compared with that of sound generated directly. Consequently, a transducer that can generate a primary wave with high directivity and level is required. This study designed, fabricated, and evaluated a multi-resonance transducer as a parametric array source. The designs of the unit transducers and array transducer were based on an analysis model. The design process was repeated to fabricate the optimum transducer. The fabricated transducer array can generate a 189 dB, 190 dB primary wave level at 6.3 m and a 134 dB difference frequency wave using the parametric array phenomenon. The difference frequency wave has a frequency of 15 kHz and high directivity with an $8^{\circ}$ half power beam width in a $12{\times}18{\times}10m$ water tank.

키워드

참고문헌

  1. K. Mizutani, N. Wakatsuki, and K. Mizutani, "Acoustic communication in air using differential biphase shift keying with influence of impulse response and background noise," Jpn. J. Appl. Phys. 46, 4541-4544 (2007). https://doi.org/10.1143/JJAP.46.4541
  2. P. J. Westervelt, "Parametric acoustic array," J. Acoust. Soc. Am. 35, 535-537 (1963). https://doi.org/10.1121/1.1918525
  3. H. Lee, D. Kang, and W. Moon, "A micro-machined source transducer for a parametric array in air," J. Acoust. Soc. Am. 125, 1879-1893 (2009). https://doi.org/10.1121/1.3081385
  4. B. K. Novikov, O. V. Rudenko, and V. I. Timoshenko, Nonlinear Underwater Acoustics (The American Institute of Physics, New York, 1987), pp. 77-83.
  5. I. O. Wygant, M. Kupnik, J. C. Windsor, W. M. Wright, M. S. Wochner, G. G. Yaralioglu, M. F. Hamilton, and B. T. Khuri-Yakub, "50 kHz capacitive micromachined ultrasonic transducers for generation of highly directional sound with parametric arrays," IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 56, 193-203 (2009). https://doi.org/10.1109/TUFFC.2009.1019
  6. K. C. Benjamin and S. Petrie, "The design, fabrication, and measured acoustic performance of a 1-3 piezoelectric composite Navy calibration standard transducer," J. Acoust. Soc. Am. 109, 1973-1978 (2001). https://doi.org/10.1121/1.1358889
  7. L. Kinsler, A. Frey, A. Coppens, and J. Sanders, Fundamentals of Acoustics, 4th Ed. (Wiley, New York, 1982), pp. 179-181 and 224-228.
  8. C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound, (Springer, New York, 2007), pp. 338-359.
  9. H. A. Kunkel, S. Locke, and B. Pikeroen, "Finite-element analysis of vibrational modes in piezoelectric ceramic disks," IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 37, 316-328 (1990). https://doi.org/10.1109/58.56492
  10. E. A. G. Shaw "On the resonant vibrations of thick barium titanate disks," J. Acoust. Soc. Am. 28, 38-50 (1956). https://doi.org/10.1121/1.1908218
  11. K. K. Shung and M. Zipparo, "Ultrasonic transducers and arrays," IEEE. Eng. Med. Biol. Mag. 15, 20-30 (1996). https://doi.org/10.1109/51.544509
  12. V. F. Humphrey, "The measurement of acoustic properties of limited size panels by use of a parametric source," J. Sound. Vib. 98, 67-81 (1985). https://doi.org/10.1016/0022-460X(85)90403-1
  13. M. B. Moffett and J. E. Blue, "Hydrophone nonlinearity measurements," J. Acoust. Soc. Am. 72, 1-6 (1982). https://doi.org/10.1121/1.387977
  14. Y. Lee, Numerical solution of the KZK equation for pulsed finite amplitude sound beams in thermoviscous fluids, (Ph. D. Thesis, The University of Texas at Austin, 1993).