DOI QR코드

DOI QR Code

Cadmium removal by Anabaena doliolum Ind1 isolated from a coal mining area in Meghalaya, India: associated structural and physiological alterations

  • Goswami, Smita (Department of Biochemistry, North-Eastern Hill University) ;
  • Syiem, Mayashree B. (Department of Biochemistry, North-Eastern Hill University) ;
  • Pakshirajan, Kannan (Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati)
  • Received : 2014.09.09
  • Accepted : 2015.01.14
  • Published : 2015.03.31

Abstract

The cyanobacterium Anabaena doliolum Ind1 isolated from a coal mining site was tested for removal of cadmium at optimum pH 7.0 and temperature $25^{\circ}C$. The organism recorded high percentage of metal removal (92-69%) within seven days of exposure to 0.5-2.0 ppm cadmium. Biosorption onto the cell surface was the primary mode of metal removal. Fourier transform infrared spectroscopy (FTIR) established hydroxyl, amides, carboxyl, sulphate and carbonyl groups to be the major functional groups on the cell surface involved in cadmium binding. Cellular ultrastructure and a range of vital physiological processes (i.e., photosynthetic pigments, respiration, photosynthesis, heterocyst frequency and nitrogenase activity) remained unaffected upon 0.5 ppm treatment; higher concentrations of cadmium exerted visible adverse effects. Amongst the five photosynthetic pigments tested, phycocyanin was the most targeted pigment (inhibition was 15-89%). Both respiration and photosynthetic activities were inhibited by cadmium with more severe effect seen on respiration. 2.0 ppm cadmium exposure also had drastic negative effect on nitrogenase activity (87% decreased).

Keywords

References

  1. Dietary Reference Intakes (DRI) reports. National Academy of Sciences, 2001.
  2. Gupta VK, Rastogi A. Biosorption of lead (II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp. - a comparative study. Colloids. Surf. B Biointerfaces 2008;64:170-178. https://doi.org/10.1016/j.colsurfb.2008.01.019
  3. Trevors JT, Stratton GW, Gadd GM. Cadmium transport, resistance and toxicity in bacteria, algae and fungi. Can. J. Microbiol. 1986;32:447-464. https://doi.org/10.1139/m86-085
  4. Vymazal J. Toxicity and accumulation of cadmium with respect to algae and cyanobacteria: A review. Toxic. Assess. 1987;2:387-415.
  5. Couillard Y, Campbell PGC, Tessier A. Response of metallothionein concentrations in a freshwater bivalve (Anodontagrandis) along an environmental cadmium gradient. Limnol. Oceanogr. 1993;38:299-313. https://doi.org/10.4319/lo.1993.38.2.0299
  6. Akthar NM, Mohan PM. Bioremediation of toxic metal ions from polluted lake waters and industrial effluents by fungal biosorbent. Curr. Sci. 1995;69:1028-1030.
  7. Babu BV, Gupta S. Adsorption of Cr(VI) using activated neem leaves as an adsorbent: kinetic studies. Adsorption 2008;14:85-92. https://doi.org/10.1007/s10450-007-9057-x
  8. Zirino A, Yamamoto S. A pH-dependent model for the chemical speciation of copper, zinc, cadmium and lead in seawater. Limnol. Oceanogr. 1972;17:661-671. https://doi.org/10.4319/lo.1972.17.5.0661
  9. Crist RH, Oberholser K, Shank N, Nguyen M. Nature of bonding between metallic ions and algal cell walls. Environ. Sci. Technol. 1981;15:1212-1217. https://doi.org/10.1021/es00092a010
  10. Atri N, Rai LC. Differential responses of three cyanobacteria to UV-B and Cd. J. Microbiol. Technol. 2003;13:544-551.
  11. Heng L, Jusoh YK, Ling CHM, Idris M. Toxicity of single and combinations of lead and cadmium to the cyanobacteria Anabaena flos-aquae. Bull. Environ. Contam. Toxicol. 2004;72: 373-379. https://doi.org/10.1007/s00128-003-8923-9
  12. Surosz W, Palinska KA. Effect of heavy metal stress on cyanobacterium Anabaena flos-aquae. Arch. Environ. Contam. Toxicol. 2004;48:40-48. https://doi.org/10.1007/s00244-004-0163-4
  13. Wong PTS, Burnison G, Chau YK. Cadmium toxicity to freshwater algae. Bull. Environ. Contam. Toxicol. 1979;23:487-490. https://doi.org/10.1007/BF01769992
  14. Rachlin JW, Jensen TE, Warkentine B. The toxicological response of the alga Anabaena cylindrica to cadmium. Arch. Environ. Contam. Toxicol. 1984;13:143-151. https://doi.org/10.1007/BF01055871
  15. Raizada M, Rai LC. Metal-induced inhibition of growth, heterocyst differentiation, carbon fixation and nitrogenase activity of Nostoc muscorum: Interaction with EDTA and calcium. Microbios Lett. 1985;30:153-161.
  16. Rai LC, Tyagi B, Mallick N, Rai PK. Interactive effect of UV-B and copper on photosynthetic activity of the cyanobacterium Anabaena doliolum. Environ. exp. Bot.1995;35:177-185. https://doi.org/10.1016/0098-8472(94)00046-8
  17. Rai LC, Tyagi B, Rai PK, Mallick N. Interactive effects of UV-B and heavy metals (Cu and Pb) on nitrogen and phosphorus metabolism of N2 fixing cyanobacterium Anabaena doliolum. Environ. exp. Bot. 1998;39:221-231. https://doi.org/10.1016/S0098-8472(98)00011-2
  18. Arunakumara KKIU, Xuecheng Z. Effects of heavy metals ($Pb^{2+}$ and $Cd^{2+}$) on the ultrastructure, growth and pigment contents of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Chin. J. Oceanol. Limnol. 2009;27:383-388. https://doi.org/10.1007/s00343-009-9123-1
  19. Latifi A, Ruiz M, Zhang CC. Oxidative stress in cyanobacteria. FEMS. Microbiol. Rev. 2009;33:258-278. https://doi.org/10.1111/j.1574-6976.2008.00134.x
  20. Deniz F, Saygideger SD, Karaman S. Response to Copper and Sodium Chloride Excess in Spirulina sp.(Cyanobacteria). Bull. Environ. Contam. Toxicol. 2011;87:11-15. https://doi.org/10.1007/s00128-011-0300-5
  21. Nongrum, NA, Syiem MB. Effects of Copper ion ($Cu^{2+}$) on the physiological and biochemical activities of the cyanobacterium Nostoc ANTH. Environ. Eng. Res. 2012;17:S63-S67.
  22. Bakiyaraj R. Effect of Heavy Metal Copper on the Marine Cyanobacterium Phormidium tenue Mengh Gomont. Int. J. Pharm. Biol. Arch. 2014;4.
  23. Singh MPVV, Prasad SM, Singh M. Cadmium and high irradiance induced oxidative stress defense system in cyanobacterium Nostoc muscorum. Asian. J. Exp. Biol. 2013;4: 545-554.
  24. Fathi AA. Toxicological response of the green alga Scenedesmus bijuga to mercury and lead. Folia Microbiol. 2002;47:667-671. https://doi.org/10.1007/BF02818669
  25. Castenholz RW. Ecology of blue-green algae in hot springs. In: Carr NG, Whitton BA, eds. The Biology of Blue-Green Algae. Oxford: Blackwell Scientific Publications; 1973. p. 379-414.
  26. Humm HJ, Wicks SR. Introduction and Guide to the Marine Bluegreen Algae. New York: John Wiley & Sons; 1980. p.194.
  27. Reed RH, Chudek JA, Foster R, Stewart WDP. Osmotic adjustment in cyanobacteria from hypersaline environments. Arch. Microbiol. 1984;138:333-337. https://doi.org/10.1007/BF00410900
  28. Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ. Trichodesmium, a globally significant marine cyanobacterium. Science 1997;276:1221-1229. https://doi.org/10.1126/science.276.5316.1221
  29. Vermaas WFJ. Photosynthesis and respiration in cyanobacteria. In: Encyclopedia of life sciences. New York: John Wiley & Sons; 2001.
  30. Prasanna R, Jaiswal P, Singh YV, Singh PK. Influence of biofertilizers and organic amendments on nitrogenase activity and phototrophic biomass of soil under wheat. Acta Agronomica Hungarica 2008;56:149-159. https://doi.org/10.1556/AAgr.56.2008.2.4
  31. De Philippis R, Paperi R, Sili C, Vincenzini M. Assessment of the metal removal capability of the two capsulated cyanobacteria, Cyanospira capsulata and Nostoc PCC7936. J. Appl. Phycol. 2003. 15: 155-161. https://doi.org/10.1023/A:1023889410912
  32. Subramanian G, Uma L. Cyanobacteria in pollution control. J. Sci. Ind. Res. 1996;55:685-692.
  33. Cervantes C, Campos-Garcia J, Devars S, et al. Interactions of chromium with microorganisms and plants. FEMS. Microbiol. Rev. 2001;25:335-347. https://doi.org/10.1111/j.1574-6976.2001.tb00581.x
  34. Zakaria MA. Removal of cadmium and manganese by a non-toxic strain of the fresh water cyanobacterium, Gloeothece magna. Water Res. 2001;35:4405-4409. https://doi.org/10.1016/S0043-1354(01)00160-9
  35. Anjana K, Kaushik A, Kiran B, Nisha R. Biosorption of Cr (VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil. J. Hazard. Mater. 2007;148:383-386. https://doi.org/10.1016/j.jhazmat.2007.02.051
  36. Cain A, Vannela R, Woo LK. Cyanobacteria as a biosorbent for mercuric ion. Bioresour. Technol. 2008;99:6578-6586. https://doi.org/10.1016/j.biortech.2007.11.034
  37. Micheletti E, Pereira S, Mannelli F, Moradas-Ferreira P, Tamagnini P, De Philippis R. sheathless mutant of cyanobacterium Gloeothecesp. strain PCC 6909 with increased capacity to remove copper ions from aqueous solutions. Appl. Environ. Microbiol. 2008;74:2797-2804. https://doi.org/10.1128/AEM.02212-07
  38. Pereira S, Micheletti E, Zille A, et al. Using extracellular polymeric substances (EPS)-producing cyanobacteria for the bioremediation of heavy metals: do cations compete for the EPS functional groups and also accumulate inside the cell? Microbiology 2011;157:451-458. https://doi.org/10.1099/mic.0.041038-0
  39. Shukla D, Vankar PS, Srivastava SK. Bioremediation of hexavalent chromium by a cyanobacterial mat. Appl. Water. Sci. 2012;2:245-251.
  40. Dixit S, Singh DP. Phycoremediation of lead and cadmium by employing Nostocmuscorum as biosorbent and optimization of its biosorption potential. Int. J. Phytoremediation 2013;15: 801-813. https://doi.org/10.1080/15226514.2012.735290
  41. Cho DY, Lee ST, Park SW, Chung AS. Studies on biosorption of heavy metals onto Chlorella vulgaris. J. Environ. Sci. Health. A. 1994;29:389-409.
  42. Gupta VK, Rastogi A, Saini VK, Jain N. Biosorption of copper (II) from aqueous solutions by Spirogyra species. J. Colloid Interface Sci. 2006;296:59-63. https://doi.org/10.1016/j.jcis.2005.08.033
  43. Raungsomboon S, Chidthaisong A, Bunnag B, Inthorn D, Harveya NW. Removal of lead ($Pb^{2+}$) by the cyanobacterium Gloeocapsa sp. Bioresour. Technol. 2008;99:5650-5658. https://doi.org/10.1016/j.biortech.2007.10.056
  44. Chakraborty N, Banerjee A, Pal R. Biomonitoring of lead, cadmium and chromium in environmental water from Kolkata, North and South-24 Parganas using algae as bioreagent. J. Algal. Biomass Utln. 2011;2:27-41.
  45. Chojnacka K, Chojnacki A, Gorecka H. Biosorption of $Cr^{3+}$, $Cd^{2+}$ and $Cu^{2+}$ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 2005;59:75-84. https://doi.org/10.1016/j.chemosphere.2004.10.005
  46. Terry PA, Stone W. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere 2002;47:249-255. https://doi.org/10.1016/S0045-6535(01)00303-4
  47. Doshi H, Seth C, Ray A, Kothari IL. Bioaccumulation of heavy metals by green algae. Curr. Microbiol. 2008;56:246-255. https://doi.org/10.1007/s00284-007-9070-z
  48. Ripkka R, Dereulles J, Waterbury JB, Herdman M, Stanier RY. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 1979;111:1-61. https://doi.org/10.1099/00221287-111-1-1
  49. Colowick SP, Kaplan NO, Packer L, Glazer AN. San Diego, California: Academic Press; 1988.
  50. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. Agarose gel electrophoresis. Short protocols in molecular biology. 2nd ed. New York: John Wiley & Sons;1999.
  51. Nubel U, Garcia-Pichel F, Muyzer G. PCR Primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 1997;63:3327-3332.
  52. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony methods. Mol. Biol. Evol. 2011;28:2731-2739. https://doi.org/10.1093/molbev/msr121
  53. Langmuir I. Adsorption of gases on plain surface of glass mica platinum. J. Am. Chem. Soc. 1918;40:1361-1403. https://doi.org/10.1021/ja02242a004
  54. Mackinney G. Absorption of light by chlorophyll solutions. J. Biol. Chem. 1941;140:315-322.
  55. Morgan RC. The carotenoids of Queensland fruits. Carotenes of the watermelon (Citrullus vulgaris). J. Food Sci. 1967;32:275-278. https://doi.org/10.1111/j.1365-2621.1967.tb01311.x
  56. Bennett A, Bogorad L. Complementary chromatic adaptation in filamentous blue green algae. J. Cell Biol. 1973;58:419-435. https://doi.org/10.1083/jcb.58.2.419
  57. Robinson SJ, Deroo CS, Yocum CF. Photosynthetic electron transfer in preparation of the cyanobacterium Spirulina platensis. Plant Physiol. 1982;70:154-161. https://doi.org/10.1104/pp.70.1.154
  58. Wolk CP. Control of sporulation in a blue-green alga. Dev. Biol. 1965;12:15-35. https://doi.org/10.1016/0012-1606(65)90018-7
  59. Stewart WDP, Fitzgerald GP, Burris RH. In situ studies on nitrogen fixation using acetylene reduction technique. Proc. Natl. Acad. Sci. U.S.A. 1967;58:2071-2078. https://doi.org/10.1073/pnas.58.5.2071
  60. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4: 406-425.
  61. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985;39:783-791. https://doi.org/10.2307/2408678
  62. Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980;16:111-120. https://doi.org/10.1007/BF01731581
  63. Kaewsarn P. Cadmium biosorption of copper(II) from aqueous solutions by pre-treated biomass of marine algae Padina sp. Chemosphere 2002;47:1081-1085. https://doi.org/10.1016/S0045-6535(01)00324-1
  64. Gupta VK, Rastogi A. Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. J. Hazard. Mater. 2008;152:407-414. https://doi.org/10.1016/j.jhazmat.2007.07.028
  65. Amini M, Younesi H, Bahramifar N, et al. Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. J. Hazard. Mater. 2008;154:694-702. https://doi.org/10.1016/j.jhazmat.2007.10.114
  66. Manju GN, Raji C, Anirudhan TS. Evaluation of coconut husk carbon for the removal of arsenic from water. Water Res. 1998;32:3062-3070. https://doi.org/10.1016/S0043-1354(98)00068-2
  67. McKay G, Ho YS, Ng JCY. Biosorption of copper from waste water: a review. Separ. Purif. Method. 1999;28:87-125. https://doi.org/10.1080/03602549909351645
  68. Ho YS. Removal of copper ions from aqueous solution by tree fern. Water Res. 2003;37:2323-2330. https://doi.org/10.1016/S0043-1354(03)00002-2
  69. Horsfall Jnr M, Spiff AI. Effects of temperature on the sorption of $Pb^{2+}$ and $Cd^{2+}$ from aqueous solution by Caladium bicolor (Wild Cocoyam) biomass. Electron. J. Biotechnol. 2005;8:43-50.
  70. Aksu Z, Kutsal T. A bioseparation process for removing Pb(II) ions from wastewater by using C. vulgaris. J. Chem. Technol. Biotechnol. 1991;52:108-118.
  71. Huang JP, Huang CP, Morehart AL. The removal of Cu(II) from diluted aqueous solution by Saccharomyces cerevisiae. Water Res. 1990;24:433-439. https://doi.org/10.1016/0043-1354(90)90225-U
  72. Donmez GC, Aksu Z, Ozturk A, Kutsal T. A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem. 1999;4:885-892.
  73. Donmez G, Aksu Z. Removal of Cr(VI) from saline wastewaters by Dunaliella species. Process Biochem. 2002;38:751-762. https://doi.org/10.1016/S0032-9592(02)00204-2
  74. Krheminska H, Fedorovych D, Babyak L, Yanovych D, Kaszycki P, Kolczek H. Chromium(III) and (VI) tolerance and bioaccumulation in yeast: a survey of cellular chromium contentin selected strains of representative genera. Process Biochem. 2005;40:1565-1572. https://doi.org/10.1016/j.procbio.2004.05.012
  75. Shah V, Ray A, Garg N, Madamwar D. Characterization of the extracellular polysaccharide produced by a marine cyanobacterium, Cyanothece sp. ATCC 51142 and its exploitation toward metal removal from solutions. Curr. Microbiol. 2000;40: 274-278. https://doi.org/10.1007/s002849910054
  76. Wang Y, Ahmed Z, Feng W, Li C,Song S. Physicochemiacal properties of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir. Int. J.Biol. Macromol. 2008;43:283-288. https://doi.org/10.1016/j.ijbiomac.2008.06.011
  77. Abdel-Aty AM, Ammar NS, Ghafar HHA, Ali RK. Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. J. Adv. Res. 2013;4:367-374. https://doi.org/10.1016/j.jare.2012.07.004
  78. Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA. Comparative Study of Biosorption of heavy metals using different types of algae. Bioresour. Technol. 2007;98:3344-3353. https://doi.org/10.1016/j.biortech.2006.09.026
  79. Morsy FM, Hassan SHA, Koutb M. Biosorption of Cd (II) and Zn (II) by Nostoc commune: Isotherm and Kinetics Studies. Clean - Soil, Air, Water 2011;39:680-687. https://doi.org/10.1002/clen.201000312
  80. Fernandez-Pinas F, Mateo P, Bonilla I. Ultrastructural changes induced by selected cadmium concentration in the cyanobacterium Nostoc UAM208. J. Plant. Physiol. 1995;147:452-456. https://doi.org/10.1016/S0176-1617(11)82182-6

Cited by

  1. Zn2+ sequestration by Nostoc muscorum: study of thermodynamics, equilibrium isotherms, and biosorption parameters for the metal vol.189, pp.7, 2017, https://doi.org/10.1007/s10661-017-6013-4
  2. Biosorption and equilibrium isotherms study of cadmium removal by Nostoc muscorum Meg 1: morphological, physiological and biochemical alterations vol.7, pp.2, 2017, https://doi.org/10.1007/s13205-017-0730-9
  3. A review on mechanism and future perspectives of cadmium-resistant bacteria pp.1735-2630, 2018, https://doi.org/10.1007/s13762-017-1400-5
  4. Análisis de parámetros de biosorción, isotermas de equilibrio y estudios termodinámicos de la captación de cromo (VI) por Nostoc sp aislada de un sitio de extracción de carbón en Meghalaya, India vol.37, pp.4, 2018, https://doi.org/10.1007/s10230-018-0523-3
  5. Influence of calcium on cadmium uptake and toxicity to the cyanobacterium Nostoc muscorum Meg 1 vol.3, pp.2, 2015, https://doi.org/10.1016/j.biori.2019.06.002
  6. Cyanobacteria mediated heavy metal removal: a review on mechanism, biosynthesis, and removal capability vol.10, pp.1, 2021, https://doi.org/10.1080/21622515.2020.1869323
  7. Phycoremediation of contaminated water by cadmium (Cd) using two cyanobacterial strains (Trichormus variabilis and Nostoc muscorum) vol.33, pp.1, 2015, https://doi.org/10.1186/s12302-021-00573-0