DOI QR코드

DOI QR Code

Efficient use of ferrate(VI) for the remediation of wastewater contaminated with metal complexes

  • Sailo, Lalsaimawia (Department of Chemistry, School of Physical Sciences, Mizoram University) ;
  • Pachuau, Lalramnghaki (Department of Chemistry, School of Physical Sciences, Mizoram University) ;
  • Yang, Jae Kyu (Division of General Education, Kwangwoon University) ;
  • Lee, Seung Mok (Department of Health and Environment, Catholic Kwandong University) ;
  • Tiwari, Diwakar (Department of Chemistry, School of Physical Sciences, Mizoram University)
  • 투고 : 2014.11.23
  • 심사 : 2015.01.06
  • 발행 : 2015.03.31

초록

Remediation of wastewater contaminated with metal(II)-complexed species (Cu(II)-NTA (NTA: nitrilotriacetic acid), Cu(II)-EDTA (EDTA: ethylenediamine tetraacetic acid) and Cd(II)-EDTA is attempted using the potential applicability of ferrate(VI). Kinetics of pollutant degradation is obtained with the removal of ferrate(VI) studied at wide range of pH (8.0-10.0) and the concentration of metal(II)-complexed species (0.3 to 15.0 mmol/L) employing a constant dose of ferrate(VI) i.e., 1.0 mmol/L. Pseudo-first-order and pseudo-second-order rate constants were obtained in the reduction of ferrate(VI) which was then employed to obtain the overall rate constants of the pollutant degradation. The mineralization of NTA and EDTA was obtained with the change in TOC (total organic carbon) values collected by the ferrate(VI) treated pollutant samples. Decrease in pH and molar pollutant concentrations was greatly favored the percent mineralization of NTA or EDTA by the ferrate(VI) treatment. The treated pollutant samples were filtered and subjected for AAS (atomic absorption spectrophotometric) analysis to assess the simultaneous removal of copper and cadmium from aqueous solutions at the studied pH as well at the elevated pH 12.0. Results show that an enhanced removal of cadmium or copper was achieved at pH 12.0. Overall, ferrate(VI) possesses multifunctional application in wastewater treatment as it oxidizes the degradable impurities and removes metallic impurities by coagulation process.

키워드

참고문헌

  1. Gyliene O, Rekertas R, Salkauskas M. Removal of free and complexed heavy-metal ions by sorbents produced from fly (Musa domestica) larva shells. Water Res. 2002;36:4128-4136. https://doi.org/10.1016/S0043-1354(02)00105-7
  2. Nowack B, Xue H, Sigg L. Influence of natural and anthropogenic ligands on metal transport during infiltration on river water to groundwater. Environ. Sci. Technol. 1997;31:866-872. https://doi.org/10.1021/es960556f
  3. Lan S, Ju F, Wu X. Treatment of wastewater containing EDTA-Cu(II) using the combined process of interior microelectrolysis and fenton oxidation-coagulation. Sep. Purif. Technol. 2012;89:117-124. https://doi.org/10.1016/j.seppur.2012.01.009
  4. Aydin H, Buluta Y, Yerlikayab E. Removal of copper(II) from aqueous solution by adsorption onto low-cost adsorbents. J. Environ. Manage. 2008;87:37-45. https://doi.org/10.1016/j.jenvman.2007.01.005
  5. Davis AP, Green DL. Photocatalytic oxidation of cadmium- EDTA with titanium dioxide. Environ. Sci. Technol. 1999;33:609-617. https://doi.org/10.1021/es9710619
  6. Wu P, Zhou J, Wang X, et al. Adsorption of Cu-EDTA complexes from aqueous solutions by polymeric Fe/Zr pillared montmorillonite: behaviors and mechanisms. Desalination 2011;277:288-295. https://doi.org/10.1016/j.desal.2011.04.043
  7. Licsko I, Takacs I. Heavy metal removal in the presence of colloid-stabilizing organic material and complexing agents. Water Sci. Technol. 1996;18:19-29.
  8. Jiang S, Qu J, Xiong Y. Removal of chelated copper from wastewaters by $Fe^{2+}$-based replacement-precipitation. Environ. Chem. Lett. 2010;8:339-342. https://doi.org/10.1007/s10311-009-0230-1
  9. Issabayeva G, Aroua MK, Sulaiman NM. Study on palm shell activated carbon adsorption capacity to remove copper ions from aqueous solutions. Desalination 2010;262:94-98. https://doi.org/10.1016/j.desal.2010.05.051
  10. Sricharoenchaikit P. Ion exchange treatment for elctroless copper- EDTA rinse water. Plat. Surf. Finish 1989;76:68-70.
  11. Borbely G, Nagy E. Removal of zinc and nickel ions by complexation- membrane filtration process from industrial wastewater. Desalination 2009;240:218-226. https://doi.org/10.1016/j.desal.2007.11.073
  12. Yeh RS, Wang YY, Wan CC. Removal of Cu-EDTA compounds via electrochemical process with coagulation. Water Res. 1995; 29:597-599. https://doi.org/10.1016/0043-1354(94)00169-8
  13. Spearot RM, Peck JV. Recovery process for complexed copper- bearing rinse waters. Environ. Prog. 1984;3:124-128. https://doi.org/10.1002/ep.670030214
  14. Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 2011;92:407-418. https://doi.org/10.1016/j.jenvman.2010.11.011
  15. Zhen H, Xu Q, Hu Y, Cheng J. Characteristics of heavy metals capturing agent dithiocarbamate (DTC) for treatment of ethylene diamine tetraacetic acid-Cu (EDTA-Cu) contaminated wastewater. Chem. Eng. J. 2012;209:547-557. https://doi.org/10.1016/j.cej.2012.08.045
  16. Wu L, Wang H, Lan H, Liu H, Qu J. Adsorption of Cu(II)-EDTA chelates on tri-ammonium-functionalized mesoporous silica from aqueous solution. Sep. Purif. Technol. 2013;117:118-123. https://doi.org/10.1016/j.seppur.2013.06.016
  17. Yang X, Wang JN, Cheng C. Preparation of new spongy adsorbent for removal of EDTA-Cu(II) and EDTA-Ni(II) from water. Chin. Chem. Lett. 2013;24:383-385. https://doi.org/10.1016/j.cclet.2013.03.005
  18. Seshadri H, Chitra S, Paramasivan K, Sinha PK. Photocatalytic degradation of liquid waste containing EDTA. Desalination 2008;232:139-144. https://doi.org/10.1016/j.desal.2007.12.013
  19. White VE, Knowles CJ. Degradation of copper-NTA by Mesorhizobium sp. NIMB 1352. Int. Biodeterior. Biodegradation 2003;52:143-150. https://doi.org/10.1016/S0964-8305(03)00049-0
  20. Lan J, Zhang S, Lin H, et al. Efficiency of biodegradable EDDS, NTA and APAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L. grown in Cd-contaminated soils. Chemosphere 2013;91:1362-1367. https://doi.org/10.1016/j.chemosphere.2013.01.116
  21. Lee HB, Peart TE, Kaiser KLE. Determination of nitrolotriacetic, ethylenediaminetetraacetic and diethylenetriaminepentaacetic acids in sewage treatment plant and paper mill effluents. J. Chromatogr. A 1996;738:91-99. https://doi.org/10.1016/0021-9673(96)00085-4
  22. Calapaj R, Ciraolo L, Corigliano F, Di Pasquale S. Dead-stop determination of EDTA and NTA in commercially available detergents. Analyst 1982;107:403-407. https://doi.org/10.1039/an9820700403
  23. Li C, Li XZ, Graham N. A study of the preparation and reactivity of potassium ferrate. Chemosphere 2005;61:537-543. https://doi.org/10.1016/j.chemosphere.2005.02.027
  24. Lee Y, Cho M, Kim JY, Yoon J. Chemistry of Ferrate (Fe(VI)) in aqueous solution and its applications as a green chemical. J. Ind. Eng. Chem. 2004;10:161-171.
  25. Tiwari D, Yang JK, Lee SM. Applications of ferrate(VI) in the treatment of wastewaters. Environ. Eng. Res. 2005;10:269-282. https://doi.org/10.4491/eer.2005.10.6.269
  26. Sharma VK. Potassium ferrate(VI): an environmentally friendly oxidant. Adv. Environ. Res. 2002;6:143-156. https://doi.org/10.1016/S1093-0191(01)00119-8
  27. Jiang JQ, Lloyd B. Progress in the development and use of ferrate(VI) salts as an oxidant and coagulant for water and wastewater treatment. Water Res. 2002;36:1397-1408. https://doi.org/10.1016/S0043-1354(01)00358-X
  28. Jiang JQ. Research progress in the use of ferrate(VI) for the environmental remediation. J. Hazard. Mater. 2007;146:617-623. https://doi.org/10.1016/j.jhazmat.2007.04.075
  29. Tiwari D, Lee SM. Ferrate (VI) in the treatment of wastewaters: a new generation green chemical. In: Prof. Fernando Sebastiin Garcia Einschlag ed. Waste Water - Treatment and reutilization. Vukovar: InTech; 2011.
  30. Lee SM, Tiwari D. Application of ferrate(VI) in the treatment of industrial wastes containing metal-complexed cyanides: a green treatment. J. Environ. Sci. 2009;21:1347-1352. https://doi.org/10.1016/S1001-0742(08)62425-0
  31. Yngard RA, Sharma VK, Filip J, Zboril R. Ferrate(VI) oxidation of weak-acid dissociable cyanides. Environ. Sci. Technol. 2008;42:3005-3010. https://doi.org/10.1021/es0720816
  32. Sharma VK. Ferrate(VI) and ferrate(V) oxidation of organic compounds: kinetics and mechanism. Coord. Chem. Rev. 2013;257:495-510. https://doi.org/10.1016/j.ccr.2012.04.014
  33. Sharma VK, Burnett CR, Yngard RA, Cabelli D. Iron(VI) and iron(V) oxidation of copper(I) cyanide. Environ. Sci. Technol. 2005;39:3849-3854. https://doi.org/10.1021/es048196g
  34. Tiwari D, Kim HU, Choi BJ, et al. Ferrate(VI): a green chemical for the oxidation of cyanide in aqueous/waste solutions. J. Environ. Sci. Health A 2007;42:803-810.
  35. Yang JK, Tiwari D, Yu MR, Pachuau L, Lee SM. Application of Fe(VI) in the treatment of Zn(II)-NTA complexes in aqueous solutions. Environ. Technol. 2010;31:791-798. https://doi.org/10.1080/09593331003664854
  36. Yu MR, Chang YY, Tiwari D, Pachuau L, Lee SM, Yang JK. Treatment of wastewater contaminated with Cd(II)-NTA using Fe(VI). Desalination Water Treat. 2012;50:43-50. https://doi.org/10.1080/19443994.2012.708534
  37. Yu MR, Kim TH, Chang YY, Yang JK. Application of ferrate in the removal of copper-organic complexes. Sustain. Environ. Res. 2010;20:269-273.
  38. Murshed M, Rockstraw DA, Hanson AT, Jhonson M. Rapid oxidation of sulfide mine tailings by reaction with potassium ferrate. Environ. Pollut. 2003;125:245-253. https://doi.org/10.1016/S0269-7491(03)00052-6
  39. Yu MR, Chang YY, Keller AA, Yang JK. Application of ferrate for the treatment of metal-sulfide. J. Environ. Manage. 2013;116:95-100. https://doi.org/10.1016/j.jenvman.2012.12.009
  40. Pachuau L, Lee SM, Tiwari D. Ferrate(VI) in wastewater treatment contaminated with metal(II)-iminodiacetic acid complexed species. Chem. Eng. J. 2013;230:141-148. https://doi.org/10.1016/j.cej.2013.06.081
  41. Tiwari D, Sailo L, Pachuau L. Remediation of aquatic environment contaminated with the iminodiacetic acid metal complexes using ferrate(VI). Sep. Purif. Technol. 2014;132:77-83. https://doi.org/10.1016/j.seppur.2014.05.010
  42. Li C, Li XZ, Graham N, Gao NY. The aqueous degradation of bisphenol A and steroid estrogens by ferrate. Water Res. 2008;42:109-120. https://doi.org/10.1016/j.watres.2007.07.023
  43. Zhang P, Zhang G, Dong J, Fan M, Zeng G. Bisphenol A oxidative removal by ferrate (Fe(VI)) under weak acidic condition. Sep. Purif. Technol. 2012;84:46-51. https://doi.org/10.1016/j.seppur.2011.06.022
  44. Han Z, Chang VW, Wang X, Lim TT, Hildemann L. Experimental study on visible-light induced photocatalytic oxidation of gaseous formaldehyde by polyester fiber supported photocatalysts. Chem. Eng. J. 2013;218:9-18. https://doi.org/10.1016/j.cej.2012.12.025
  45. Pachuau L. Ferrate(VI): a green chemical for the treatment of aqueous wastes [dessertation]. Aizawl, India: Mizoram University; 2013.
  46. Nortemann B. Biodegradation of chelating agents: EDTA, DTPA, PDTA, NTA, and EDDS. ACS Symp. Ser. 2005;910:150-170.
  47. Ohta T, Kamachi T, Shiota Y, Yoshizawa K. A theoretical study of alcohol oxidation of ferrate. J. Org. Chem. 2001;66:4122-4131. https://doi.org/10.1021/jo001193b
  48. Sharma VK, O'Connor DB, Cabelli D. Oxidation of thiocyanate by iron(V) in alkaline medium. Inorganica Chim. Acta 2004;357:4587-4591. https://doi.org/10.1016/j.ica.2004.07.001
  49. Jiang JQ, Zhou Z, Pahl O. Preliminary study of ciprofloxacin(cip) removal by potassium ferrate (VI). Sep. Purif. Technol. 2012;88: 95-98. https://doi.org/10.1016/j.seppur.2011.12.021
  50. Sharma VK, Burnett CR, O'Connor DB, Cabelli D. Iron(VI) and iron(V) oxidation of thiocyanate. Environ. Sci. Technol. 2002;36:4182-4186. https://doi.org/10.1021/es020570u
  51. Sharma VK, Yngard RA, Cabelli DE, Baum JC. Ferrate(VI) and ferrate(V) oxidation of cyanide, thiocyanate and copper(I) cyanide. Radiat. Phys. Chem. 2008;77:761-767. https://doi.org/10.1016/j.radphyschem.2007.11.004
  52. Lee C, Lee Y, Schmidt C, Yoon J, von Gunten U. Oxidation of suspected N- nitrosodimethylamine (NDMA) precursors by ferrate (VI): Kinetics and effect on the DMA formation potential of natural waters. Water Res. 2008;42:433-441. https://doi.org/10.1016/j.watres.2007.07.035
  53. DeLuca SJ, Chao AC, Smallewood C. Removal of organic priority pollutants by oxidation-coagulation. J. Environ. Eng. 1983;109: 36-46. https://doi.org/10.1061/(ASCE)0733-9372(1983)109:1(36)

피인용 문헌

  1. Development of On-Site Process for Refractory 2,4-Dichlorophenol Treatment vol.20, pp.1, 2016, https://doi.org/10.9726/kspse.2016.20.1.042
  2. Ferrate(VI)를 이용한 발전소 탈황폐수 처리에 관한 연구 vol.31, pp.4, 2017, https://doi.org/10.11001/jksww.2017.31.4.297
  3. Application of sodium ferrate produced from industrial wastes for TOC removal of surface water vol.79, pp.7, 2019, https://doi.org/10.2166/wst.2019.127
  4. Removal of cadmium from aqueous solutions using inorganic porous nanocomposites vol.36, pp.5, 2015, https://doi.org/10.1007/s11814-019-0262-6
  5. Aqueous cadmium removal with ferrate: Influencing factors, removal mechanism, and effect of coexisting ions vol.91, pp.7, 2015, https://doi.org/10.1002/wer.1088
  6. Complete Removal of Organoarsenic by the UV/Permanganate Process via HO Oxidation and in Situ-Formed Manganese Dioxide Adsorption vol.1, pp.4, 2015, https://doi.org/10.1021/acsestengg.1c00004
  7. Las cuencas hidrográficas y los relaves mineros vol.9, pp.2, 2015, https://doi.org/10.36610/j.jsab.2021.090200067
  8. Watersheds and mining tailings vol.9, pp.2, 2015, https://doi.org/10.36610/j.jsab.2021.090200067x
  9. Ferrate (VI) as efficient oxidant for elimination of sulfamethazine in aqueous wastes: Real matrix implications vol.27, pp.5, 2015, https://doi.org/10.4491/eer.2021.256