DOI QR코드

DOI QR Code

Effect of Pre-Germination by Treatment of Soaking on Germination of Soybean

콩의 발아 전 침종처리가 발아에 미치는 영향

  • Cho, Seong-Woo (Crop Breeding Research Division, NICS, RDA) ;
  • Kim, Tae-Sun (Department of Crop Science, Chungbuk National University) ;
  • Kwon, Soo-Jeong (Department of Crop Science, Chungbuk National University) ;
  • Roy, Swapan Kumar (Department of Crop Science, Chungbuk National University) ;
  • Lee, Chul-Won (Department of Crop Science, Chungbuk National University) ;
  • Kim, Hong-Sig (Department of Crop Science, Chungbuk National University) ;
  • Woo, Sun-Hee (Department of Crop Science, Chungbuk National University)
  • 조성우 (국립식량과학원 작물육종과) ;
  • 김태선 (충북대학교 식물자원학과) ;
  • 권수정 (충북대학교 식물자원학과) ;
  • ;
  • 이철원 (충북대학교 식물자원학과) ;
  • 김홍식 (충북대학교 식물자원학과) ;
  • 우선희 (충북대학교 식물자원학과)
  • Received : 2015.03.12
  • Accepted : 2015.03.20
  • Published : 2015.03.31

Abstract

This study was carried out to investigate the effect of pre-germination soaking on germination in 90 Korean soybean varieties and identification of protein in seeds of 7 soybean varieties. The results obtained that germination rate of soybean seeds was decreased as amount of soaking water and soaking duration in number of days. Difference in germination rate of soybean seeds was significant at three days soaking with water volume of 90 ml. Water absorption of seeds was rapidly increased during the first 6 hours, followed by slow increase until 24 hours and then decreased 24 to 48 hours after soaking soybean varieties for bean sprout soaked the lowest amount of water, while soybean varieties for cooking with rice showed the lowest seed water content. Dissolved oxygen (DO) in soaking water was rapidly decreased during the first 3 hours after soaking, and then slowly decreased. Soybean varieties for vegetable and early maturity showed the lowest DO during early soaking periods, but showed higher DO after 24 hours than other groups of soybean varieties. Electrical conductivity and Total Dissolved Solid (TDS) were increased as number of soaking days increased. Soybean varieties for vegetable and early maturity showed the highest electrical conductivity and TDS, followed by those for sauce and paste or cooking with rice, while showed the lowest electrical conductivity and TDS, varieties for bean sprout. Among 90 Korean soybean varieties, varieties which showed the highest germination rate were Jangsu-kong for sauce and paste, Sobaegnamul-kong for bean sprout, Seonheuk-kong for cooking with rice, Seunnokkong for vegetable and early maturity. On the ather hand varieties which showed the lowest germination rate were Iksan and Songhak-kong for sauce and paste, Pangsa-kong for bean sprout, Jinyeul-kong for cooking with rice, Sinlok-kong for vegetable and early maturity. Germination rates of soybean seeds were higher when electrical conductivity, TDS and water absorption of seeds were lower. There were negative correlations between electrical conductivity, TDS and water absorption of seeds and germination rate, while there were positive correlations among electrical conductivity, TDS and soybean seed weight.

우리나라에서 육성된 콩 품종 90개에 대하여 종자의 발아 전 침종처리에 따른 발아능과 발아율을 조사한 결과는 다음과 같다. 침수량과 침종일수에 따른 콩 종자의 발아력은 침수량이 증가하고, 침종일수가 증가할수록 낮아졌는데, 침수량 90ml와 3일간 침종에서 품종간의 차이가 크게 나타났다. 종자의 수분흡수는 침종 후 6시간까지 급격하게 증가한 후 완만하게 증가하다가 24시간 이후부터는 줄어들었는데, 나물콩의 수분 흡수가 가장 낮았고, 밥밑콩의 수분함량이 가장 낮았다. 용존산소량은 침종 후 3시간까지는 급격히 감소하다가 그 이후에는 완만하게 감소하였는데, 풋콩 및 올콩은 침종 3시간 후부터 용존산소량이 가장 낮았으나 24시간이후에는 다른 용도의 콩에 비해 높아졌다. 전기전도율과 TDS는 침종 후 시간이 경과함에 따라 증가하였는데 풋콩 및 올콩이 가장 높았고, 다음으로 장류콩, 밥밑콩이 높았으며 종자의 크기가 작은 나물콩이 가장 낮았다. 침종 후 발아율이 높은 품종은 장류콩에서는 장수콩, 나물콩에서는 소백나물콩, 밥밑콩에서는 선흑콩, 그리고 풋콩 및 올콩에서는 선록콩이었으며, 발아율이 낮은 품종은 장류콩에서는 익산과 송학콩, 나물콩에서는 방사콩, 밥밑콩에서는 진율콩, 풋콩 및 올콩에서는 신록콩이었다. 전기전도율과 TDS가 낮은 품종들은 발아율이 높았고, 높은 품종은 발아율이 낮은 경향이었다. 종자의 수분흡수가 낮은 품종들은 발아율이 높아 수분흡수와 발아율은 부의 상관이 있었다. 종자의 무게가 높은 품종은 전기전도율과 TDS가 높았으며, 종자의 무게가 낮은 품종은 전기전도율과 TDS도 낮아 정의 상관이 있었다.

Keywords

References

  1. Bruce, S., P. C. Andersen, and R. C. Ploetz. 1992. Responses of fruit crops to flooding. Horticultural Reviews. 13 : 257-313.
  2. Edward Jr. C. J. and E. E. Hartwig. 1971. Effects of seed size upon rate of germination in soybeans. Agron. J. 63 : 429-450. https://doi.org/10.2134/agronj1971.00021962006300030024x
  3. Garside, A. L. 1987. Irrigation management of soybean (Glycine Max (L.) Merrill) in a semi-arid tropical environment. Ph.D. Thesis. Univ. of Queensland. pp. 299.
  4. Green, D. E. and E. L. Pinnell. 1968. Inheritance of soybean seed quality. I. Heritability of laboratory germination and field emergence. Crop Sci. 8 : 5-11. https://doi.org/10.2135/cropsci1968.0011183X000800010003x
  5. Heydecker, W., P. I. Orphanous, and R. S. Chetram. 1969. The importance of air supply during seed germination. Proc. Int. Seed Test. Ass. 34 : 297-403.
  6. Hou, F. F. and F. S. Thseng. 1991. Studies on the flooding tolerance of soybean seed: varietal differences. Euphytica. 57(2) : 169-173. https://doi.org/10.1007/BF00023075
  7. Hou, F. F., F. S. Thseng, S. T. Wu, and K. Takeda. 1995. Varietal differences and diallel analysis of pre-germination flooding tolerance in soybean seed. Bull. Res. Inst. Bioresour. Okayama Univ. 3 : 35-41.
  8. Hunter, J. R. and A. E. Erickson. 1952. Relation of seed germination to soil moisture tension. Agron. J. 44 : 107-109. https://doi.org/10.2134/agronj1952.00021962004400030001x
  9. Kim, Y. W. and J. I. Lee. 1981. Relationship between seed leakage solutes during imbibition and germinability on soybeans. Korean J. Breed. 13(2) : 115-119.
  10. Langan, T. D., J. W. Pendleton, and E. S. Oplinger. 1986. Peroxide coated seed emergence in water-saturated soil. Agron. J. 78 : 769-772. https://doi.org/10.2134/agronj1986.00021962007800050004x
  11. Lemke-Keyes, C. A. and M. M. Sachs. 1989. Anaerobic tolerant null: a mutant that allows Adh1 nulls to survive anaerobic treatment. The Journal of Heredity. 80(4) : 316-319.
  12. Nakayama, N., S. Hashimoto, S. Shimada, M. Takahashi, Y. H. Kim, T. Oya, and J. Arihara. 2004. The effect of flooding stress at the germination stage on the growth of soybean in relation to initial seed moisture content. Jpn. J. Crop Sci. 73(3) : 323-329. https://doi.org/10.1626/jcs.73.323
  13. Nathanson, K., R. J. Lawn, P. L. M. De Jabrun, and D. E. Byth. 1984. Growth, nodulation and nitrogen accumulation by soybean in saturated soil culture. Field Crops Res. 8 : 73-92. https://doi.org/10.1016/0378-4290(84)90053-4
  14. Park, G. H. and I. Y. Baek. 2000. Effect of ozone water on germination and growth of soybean sprout. Korea Soybean Digest. 17(2) : 20-26.
  15. Park, K. Y., B. R. Buttery, C. S. Tan, and S. D. Kim. 1996. Relationship between seed coat characteristics and water uptake, electrical conductivity after soaking in soybean genotypes. Korean J. Breed. 28(1) : 49-55.
  16. Parrish, D. J. and A. C. Leopold. 1977. Transient changes during soybean imbibition. Plant Physio. 59 : 1111-1115. https://doi.org/10.1104/pp.59.6.1111
  17. Pollock, B. M. and E. E. Ross. 1972. Seed and seedling vigour. In: Kozlowski (Editor), Seed Biology I. Academic Press, New York and London. pp. 313-387.
  18. Purcell, L. C., C. A. King, and R. A. Ball. 2000. Soybean cultivar differences in ureides and the relationship to drought tolerant nitrogen fixation and manganese nutrition. Crop Sci. 40 : 1062-1070. https://doi.org/10.2135/cropsci2000.4041062x
  19. Sung, J. M. 1995. The effect of sub optimal $O_2$ on seedling emergense of soybean seeds of different seed size. Seed Sci. Technol. 23 : 312-317.
  20. Troedson, R. J., R. J. Lawn, D. E. Byth, and G. L. Wilson. 1989a. Response of field-grown soybean to saturated soil culture. 1. Patterns of biomass and nitrogen accumulation. Field Crops Res. 21 : 171-187. https://doi.org/10.1016/0378-4290(89)90001-4
  21. Troedson, R. J., R. J. Lawn, D. E. Byth, and G. L. Wilson. 1989b. Response of field-grown soybean to saturated soil culture. 2. Effect of treatments to alter photosynthesis and leaf nitrogen supply. Field Crops Res. 21 : 189-201. https://doi.org/10.1016/0378-4290(89)90002-6

Cited by

  1. 다양한 콩 자원들의 기내 조직배양 효율 및 형질전환 vol.34, pp.4, 2015, https://doi.org/10.7732/kjpr.2021.34.4.278