DOI QR코드

DOI QR Code

Review on statistical methods for large spatial Gaussian data

  • Received : 2014.12.30
  • Accepted : 2015.01.30
  • Published : 2015.03.31

Abstract

The Gaussian geostatistical model has been widely used for modeling spatial data. However, this model suffers from a severe difficulty in computation because inference requires to invert a large covariance matrix in evaluating log-likelihood. In addressing this computational challenge, three strategies have been employed: likelihood approximation, lower dimensional space approximation, and Markov random field approximation. In this paper, we reviewed statistical approaches attacking the computational challenge. As an illustration, we also applied integrated nested Laplace approximation (INLA) technology, one of Markov approximation approach, to real data to provide an example of its use in practice dealing with large spatial data.

Keywords

References

  1. Banerjee, S., Gelfand, A.E., Finley, A. O. and Sang, H. (2008). Gaussian predictive process models for large spatial data sets. Journal of the Royal Statistical Society B, 70, 825-848. https://doi.org/10.1111/j.1467-9868.2008.00663.x
  2. Besag, J. and Modal, D. (2005). First-order intrinsic autoregressions and the Wijs process. Biometrika, 92, 909-920. https://doi.org/10.1093/biomet/92.4.909
  3. Blangiardo, M., Cameletti, M., Bairo, G. and Rue, H. (2013). Spatial and spatio-temporal models with R-INLA. Spatial and Spatio-Temporal Epidemiology, 4, 33-49 https://doi.org/10.1016/j.sste.2012.12.001
  4. Cressie, N. A. C. (1993). Statistics for spatial data, 2nd edition, Wiley, New York.
  5. Fuentes, M. (2007). Approximate likelihood for large irregularly spaced spatial data. Journal of the American Statistical Association, 102, 321-331. https://doi.org/10.1198/016214506000000852
  6. Furrer, R., Genton, M. G. and Nychka, D. (2006). Covariance tapering for interpolation of large spatial datasets. Journal of Computational and Graphical Statistics, 15, 502-523. https://doi.org/10.1198/106186006X132178
  7. Hartman, L. and Hossjer, O. (2008). Fast kriging of large data sets with Gaussian Markov random fields. Computational Statistics and Data Analysis, 52, 2331-2349. https://doi.org/10.1016/j.csda.2007.09.018
  8. Jones, R. H. and Zhang, Y. (1997). Models for continuous stationary space-time processes. In Modeling Longitudinal and Spatially Correlated Data (Lecture Notes in Statistics 122), edited by: Gregoire, T. G., Brillinger, D. R., Diggle, P. J., Russek-Cohen, E., Warren, W. G. and Wolfinger, R. D., Springer, New York, 289-298.
  9. Kammann, E. E. and Wand, M. P. (2003). Geoadditive models. Applied Statistics, 52, 1-18.
  10. Kaufman, C., Schervish, M. and Nychka, D. (2008). Covariance tapering for likelihood-based estimation in large spatial datasets. Journal of the American Statistical Association, 103, 1156-1569.
  11. Lin, X., Wahba, G., Xiang, D., Gao, F., Klein, R. and Klein, B. (2000). Smoothing spline ANOVA models for large datasets with Bernoulli observations and the randomized GACV. The Annals of Statistics, 28, 1570-1600. https://doi.org/10.1214/aos/1015957471
  12. Lindgren, F., Lindstrom, J. and Rue, H. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. Journal of the Royal Statistical Society B, 73, 423-498. https://doi.org/10.1111/j.1467-9868.2011.00777.x
  13. Muff, S., Riebler, A., Held, L., Rue, H. and Saner, P. (2014). Bayesian analysis of measurement error models using integrated nested Laplace approximations. Applied Statistics, online version.
  14. Nychka, D., Furrer, R. and Sain, S. (2014). fields: Tools for spatial data. R package, version 7.1.
  15. Paciorek, C. J. (2007). Computational techniques for spatial logistic regression with large datasets. Computational Statistical Data Analysis, 51, 3631-3653. https://doi.org/10.1016/j.csda.2006.11.008
  16. Park, J. and Liang, F. (2012). Bayesian analysis of geostatistical models with an auxiliary lattice. Journal of Computational and Graphical Statistics., 21, 453-475. https://doi.org/10.1080/10618600.2012.679228
  17. Rue, H. and Held, L. (2005). Gaussian Markov random fields: Theory and applications, Chapman & Hall/CRC, Boca Raton.
  18. Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society B, 71, 319-392. https://doi.org/10.1111/j.1467-9868.2008.00700.x
  19. Rue, H., Martino, S., Finn, L., Simpson, D., Riebler, A. and Krainski, E. T. (2014). INLA: Functions which allow to perform full Bayesian analysis of latent Gaussian models using integrated nested Laplace approximation. R package, version 0.0-1404466478.
  20. Rue, H. and Tjelmeland, H. (2002). Fitting Gaussian Markov random fields to Gaussian field. Scandinavian Journal of Statistics, 29, 31-49. https://doi.org/10.1111/1467-9469.00058
  21. Stein, M. L. (1999). Interpolation of spatial data: Some theory of Kriging, Springer, New York.
  22. Stein, M. L. Chi, Z. and Welty, L. J. (2004). Approximating likelihoods for large spatial data sets. Journal of the Royal Statistical Society B, 66, 275-296. https://doi.org/10.1046/j.1369-7412.2003.05512.x
  23. Vecchia, A. V. (1988). Estimation and model identification for continuous spatial processes. Journal of the Royal Statistical Society B, 50, 297-312.
  24. Wikle, C. and Cressie, N. (1999). A dimension-reduced approach to space-time Kalman filtering. Biometrika, 86, 815-829. https://doi.org/10.1093/biomet/86.4.815

Cited by

  1. 여러 가지 가중행렬을 가진 공간 시계열 모형들의 예측 vol.28, pp.1, 2015, https://doi.org/10.7465/jkdi.2017.28.1.11