DOI QR코드

DOI QR Code

Improvement of Anti-Corrosion Characteristics for Light Metal in Surface Modification with Sulfuric Acid Solution Condition

경금속 표면개질 시 황산 수용액 조건에 따른 내식성 개선 효과

  • Lee, Seung-Jun (Department of Power System Engineering, Kunsan National University) ;
  • Han, Min-Su (Division of Marine Engineering, Mokpo Maritime University) ;
  • Kim, Seong-Jong (Division of Marine Engineering, Mokpo Maritime University)
  • Received : 2014.06.05
  • Accepted : 2014.09.23
  • Published : 2015.03.31

Abstract

Surface modification is a technology to form a new surface layer and overcome the intrinsic properties of the base material by applying thermal energy or stress onto the surface of the material. The purpose of this technique is to achieve anti-corrosion, beautiful appearance, wear resistance, insulation and conductance for base materials. Surface modification techniques may include plating, chemical conversion treatment, painting, lining and surface hardening. Among which, a surface modification process using electrolytes has been investigated for a long time in connection with research on its industrial application. The technology is highly favoured by various fields because it provides not only high productivity and cost reduction opportunities, but also application availability for components with complex geometry. In this study, an electrochemical experiment was performed on the surface of 5083-O Al alloy to determine an optimal electrolyte temperature, which produces surface with excellent corrosion resistance under marine environment than the initial surface. The experiment result, the modified surface presented a significantly lower corrosion current density with increasing electrolyte temperature, except for $5^{\circ}C$ of electrolyte temperature at which premature pores was created.

표면개질이란 재료 본연의 특성만으로 원하는 성능과 기능을 발휘할 수 없는 때 기재 표면에 열에너지, 응력 등을 부가하여 새로운 표면층을 형성하는 방법으로, 소지금속의 방청, 외관미화, 내마모성, 전기절연, 전기전도성 부여 등의 폭넓은 목적을 달성시키고자 하는 일련의 조작을 말한다. 이러한 표면개질에는 도금, 화성처리, 도장, 라이닝, 코팅, 표면 경화 등이 있다. 그 중 전해액을 이용한 표면개질은 오래전부터 공업적으로 활용하기 위한 연구가 많이 이루어져 왔으며, 원가절감과 높은 생산성, 그리고 복잡한 형상에 대한 적용이 가능해 여러 분야에서 각광받고 있다. 따라서 본 연구에서는 5083-O 알루미늄 합금을 이용해 해양환경에서 우수한 내식성을 보유할 수 있는 최적의 표면개질 전해액 온도를 선정하고자 전기화학 실험을 실시하였다. 실험 결과, 표면개질을 실시한 경우가 현저히 낮은 부식전류밀도를 나타냈으며, 특히 불완전 기공이 생성된 $5^{\circ}C$를 제외하고 전해액 온도가 증가함에 따라 감소하는 결과를 나타냈다.

Keywords

References

  1. M. S. Hunter and P. Fowle, "Determination of barrier layer thickness of anodic oxide coatings," Journal of the Electrochemical Society, vol. 101, no. 9, pp. 481-485, 1954. https://doi.org/10.1149/1.2781304
  2. J. E. Lewis and R. C. Plumb, "Studies of the anodic behavior of aluminum," Journal of the Electrochemical Society, vo1. 105, no. 9, pp. 498-502, 1958. https://doi.org/10.1149/1.2428909
  3. F. Keller, M. S. Hunter, and D. L. Robinson, "Structural features of oxide coatings on aluminum," Journal of the Electrochemical Society, vol. 100, no. 9, pp. 411-419, 1953. https://doi.org/10.1149/1.2781142
  4. K. N. Rai and E. Ruckenstein, "Alumina substrates with cylindrical parallel pores," Journal of Catalysis, vol. 40, no. 1, pp. 117-123, 1975. https://doi.org/10.1016/0021-9517(75)90234-1
  5. H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science, vol. 268, no. 5216, pp. 1466-1468, 1995. https://doi.org/10.1126/science.268.5216.1466
  6. K. T. Kim, M. K. Ahn, J. H. Lee, and H. S. Kwon, "Effects of silicone contents and flow rates on the formation and mechanical properties of hard anodized film of Al-Si alloys," Journal of the Korean Institute of Surface Engineering, vol. 24, no. 4, pp. 179-186, 1991.
  7. Y. H. Chang, C. W. Lee, and Y. M. Hahm, "Preparation of porous alumina membrane by anodic oxidation in sulfuric acid," Journal of the Korean Institute of Chemical Engineers, vol. 36, no. 5, pp. 653-660, 1998.
  8. J. W. Moon, J. H. Lee, and H. S. Kwon, "A study on the characteristics of hard anodizing film of Al-Si piston alloy," Journal of the Korean Institute of Surface Engineering, vo1. 23, no. 1, pp. 34-43, 1990.
  9. G. William. Wood, Metals handbook. vol. 5, Surface Cleaning, Finishing, and Coating, 9th Edition, American Society for Metals, Ohio, 1982.
  10. D. Chen, K. J. Howe, J. Dallman, and B. C. Letellier, "Corrosion of aluminium in the aqueous chemical environment of a loss-of-coolant accident at a nuclear power plant," Corrosion Science, vo1. 50, no. 4, pp. 1046-1057, 2008. https://doi.org/10.1016/j.corsci.2007.11.034
  11. J. K. Chang, C. M. Liao, C. H. Chen, and W. T. Tsaia, "Microstructure and electrochemical characteristics of aluminum anodized film formed in ammonium adipate solution," Journal of The Electrochemical Society, vo1. 150, no. 6, pp. 266-273, 2003.
  12. Y. S. Jeong, The Structural Chemistry of Anodic Alumina, Ph. D. Thesis, Corrosion and Protection Centre, The University of Manchester Institute of Science and Technology, UK, 1993.
  13. T. P. Hoar and J. Yahalom, "The initiation of pores in anodic oxide films formed on aluminum in acid solutions," Journal of the Electrochemical Society, vo1. 110, no. 6, pp. 614-621, 1963. https://doi.org/10.1149/1.2425839
  14. R. T. Foley, "Localized corrosion of alumium alloys -A Review," Corrosion, vo1. 42, pp. 277-288, 1986. https://doi.org/10.5006/1.3584905
  15. Y. Zheng, S. Luo, and W. Ke, "Effect of passivity on electrochemical corrosion behavior of alloys during cavitation in aqueous solutions," Wear, vol. 262, no. 11-12, pp. 1308-1314, 2007. https://doi.org/10.1016/j.wear.2007.01.006
  16. M. Pourbaix, Atlas of Electrochemical Equilibria, ed. by J. A. Franklin, National Association of Corrosion Engineers, Houston,
  17. Denny A. Jones, Principles and Prevention of Corrosion, 2nd Edition, Prentice Hall, Pearson, 1996.

Cited by

  1. 경질양극산화된 5083-H321 알루미늄 합금의 해수 내 액적충격침식부식 손상 연구 vol.19, pp.6, 2015, https://doi.org/10.14773/cst.2020.19.6.310
  2. Al 6061-T6 합금의 해수 내 캐비테이션 진폭에 따른 캐비테이션-침식 조건하에서 전기화학적 특성 vol.19, pp.6, 2020, https://doi.org/10.14773/cst.2020.19.6.318