UNIVARTE LEFT FRACTIONAL POLYNOMIAL HIGH
ORDER MONOTONE APPROXIMATION

GEORGE A. ANASTASSIOU

Abstract. Let \(f \in C^r ([−1, 1]) \), \(r \geq 0 \) and let \(L^* \) be a linear left frac-
tional differential operator such that \(L^* (f) \geq 0 \) throughout \([0, 1]\). We can
find a sequence of polynomials \(Q_n \) of degree \(\leq n \) such that \(L^* (Q_n) \geq 0 \)
over \([0, 1]\), furthermore \(f \) is approximated left fractionally and simulta-
neously by \(Q_n \) on \([-1, 1]\). The degree of these restricted approximations
is given via inequalities using a higher order modulus of smoothness for
\(f^{(r)} \).

1. Introduction

The topic of monotone approximation started in [6] has become a major
trend in approximation theory. A typical problem in this subject is: given a
positive integer \(k \), approximate a given function whose \(k \)th derivative is \(\geq 0 \) by
polynomials having this property.

In [3] the authors replaced the \(k \)th derivative with a linear differential oper-
ator of order \(k \). We mention this motivating result.

Theorem 1. Let \(h, k, p \) be integers, \(0 \leq h \leq k \leq p \) and let \(f \) be a real function,
\(f^{(p)} \) continuous in \([-1, 1]\) with modulus of continuity \(\omega_1 (f^{(p)}, x) \) there. Let
\(a_j (x) \), \(j = h, h + 1, \ldots, k \) be real functions, defined and bounded on
\([-1, 1]\) and assume \(a_h (x) \) is either \(\geq \) some number \(\alpha > 0 \) or \(\leq \) some number \(\beta < 0 \)
throughout \([-1, 1]\). Consider the operator

\[
L = \sum_{j=h}^{k} a_j (x) \left[\frac{d^j}{dx^j} \right]
\]

and suppose, throughout \([-1, 1]\),

\[
L (f) \geq 0.
\]

Received March 21, 2014.

2010 Mathematics Subject Classification. 26A33, 41A10, 41A17, 41A25, 41A28, 41A29.

Key words and phrases. monotone approximation, Caputo fractional derivative, fractional
linear differential operator, higher order modulus of smoothness.
Then, for every integer $n \geq 1$, there is a real polynomial $Q_n(x)$ of degree $\leq n$ such that
\[L(Q_n) \geq 0 \text{ throughout } [-1,1] \]
and
\[\max_{-1 \leq x \leq 1} |f(x) - Q_n(x)| \leq Cn^{k-p}x^1 \left(f^{(p')} \frac{1}{n} \right), \]
where C is independent of n or f.

We use also the notation $I = [-1,1]$.

We would like to mention:

Theorem 2 (Gonska and Hinemmamn [5]). Let $r \geq 0$ and $s \geq 1$. Then there exists a sequence $Q_n = Q_n^{(r,s)}$ of linear polynomial operators mapping $C^r(I)$ into P_n (space of polynomials of degree $\leq n$), such that for all $f \in C^r(I)$, all $|x| \leq 1$ and all $n \geq \max(4(r+1), r+s)$ we have
\[|f(x) - (Q_n f)(x)| \leq M_{r,s} (\Delta_n(x))^r \omega_s \left(f^{(r)}, \Delta_n(x) \right), \quad 0 \leq k \leq r, \]
where $\Delta_n(x) = \frac{x^n}{n!} + \frac{1}{n}$, and $M_{r,s}$ is a constant independent of f, x, and n. Above ω_s is the usual modulus of smoothness of order s with respect to the supremum norm.

Theorem 2 implies the useful:

Corollary 3 ([2]). Let $r \geq 0$ and $s \geq 1$. Then there exists a sequence $Q_n = Q_n^{(r,s)}$ of linear polynomial operators mapping $C^r(I)$ into P_n, such that for all $f \in C^r(I)$ and all $n \geq \max(4(r+1), r+s)$ we have
\[\left\| f^{(k)} - (Q_n f)^{(k)} \right\|_\infty \leq \frac{C_{r,s}}{n^{k-r}} \omega_s \left(f^{(r)}, \frac{1}{n} \right), \quad k = 0, 1, \ldots, r, \]
where $C_{r,s}$ is a constant independent of f and n.

In [2] we proved the motivational:

Theorem 4. Let h, v, r be integers, $0 \leq h \leq v \leq r$ and let $f \in C^r(I)$, with $f^{(r)}$ having modulus of smoothness $\omega_s(f^{(r)}, \delta)$ there, $s \geq 1$. Let $\alpha_j(x)$, $j = h, h+1, \ldots, v$ be real functions, defined and bounded on I and suppose α_h is either $\geq \alpha > 0$ or $\leq \beta < 0$ throughout I. Take the operator
\[L = \sum_{j=h}^v \alpha_j(x) \left(\frac{d^j}{dx^j} \right) \]
and assume, throughout I,
\[L(f) \geq 0. \]

Then for every integer $n \geq \max(4(r+1), r+s)$, there exists a real polynomial $Q_n(x)$ of degree $\leq n$ such that
\[L(Q_n) \geq 0 \text{ throughout } I, \]
and
\[\| f^{(k)} - Q_n^{(k)} \|_\infty \leq \frac{C}{n^{r-v}} \omega_s \left(f^{(r)} \frac{1}{n} \right), \quad 0 \leq k \leq h. \]

Moreover, we get
\[\| f^{(k)} - Q_n^{(k)} \|_\infty \leq \frac{C}{n^{r-k}} \omega_s \left(f^{(r)} \frac{1}{n} \right), \quad h+1 \leq k \leq r, \]
were \(C \) is a constant independent of \(f \) and \(n \).

In this article we extend Theorem 4 to the fractional level. Indeed here \(L \) is replaced by \(L^* \), a linear left Caputo fractional differential operator. Now the monotonicity property is only true on the critical interval \([0, 1]\). Simultaneous and fractional convergence remains true on all of \(I \).

We are also inspired by [1].

We make:

Definition 5 ([4], p. 50). Let \(\alpha > 0 \) and \(\lceil \alpha \rceil = m \), \((\lceil \cdot \rceil \) ceiling of the number). Consider \(f \in C^m([-1, 1]) \). We define the left Caputo fractional derivative of \(f \) of order \(\alpha \) as follows:
\[(D_{-1}^{\alpha} f)(x) = \frac{1}{\Gamma(m-\alpha)} \int_{-1}^{x} (x-t)^{m-\alpha-1} f^{(m)}(t) \, dt, \]

for any \(x \in [-1, 1] \), where \(\Gamma \) is the gamma function.

We set
\[D_0^{\alpha} f (x) = f (x), \]
\[D_{-1}^{m} f (x) = f^{(m)} (x), \quad \forall \ x \in [-1, 1]. \]

2. Main result

We present:

Theorem 6. Let \(h, v, r \) be integers, \(1 \leq h \leq v \leq r \) and let \(f \in C^r([-1, 1]) \), with \(f^{(r)} \) having modulus of smoothness \(\omega_s \left(f^{(r)}, \delta \right) \) there, \(s \geq 1 \). Let \(\alpha_j(x) \), \(j = h, h+1, \ldots, v \) be real functions, defined and bounded on \([-1, 1]\) and suppose \(\alpha_h(x) \) is either \(\alpha > 0 \) or \(\leq \beta < 0 \) on \([0, 1]\). Let the real numbers \(\alpha_0 = 0 < \alpha_1 \leq 1 < \alpha_2 \leq 2 < \cdots < \alpha_r \leq r \). Here \(D_{-1}^{\alpha} f \) stands for the left Caputo fractional derivative of \(f \) of order \(\alpha_j \) anchored at \(-1\). Consider the linear left fractional differential operator
\[L^* := \sum_{j=h}^{k} \alpha_j(x) [D_{-1}^{\alpha_j}], \]

and suppose, throughout \([0, 1]\),
\[L^* (f) \geq 0. \]
Then, for any \(n \in \mathbb{N} \) such that \(n \geq \max (4 (r + 1), r + s) \), there exists a real polynomial \(Q_n (x) \) of degree \(\leq n \) such that

\[
(13) \quad L^* (Q_n) \geq 0 \text{ throughout } [0, 1],
\]

and

\[
(14) \quad \sup_{-1 \leq x \leq 1} \left| (D_{x-}^{\alpha_1} f) (x) - (D_{x-}^{\alpha_j} Q_n) (x) \right| \leq \frac{2^j \omega_s}{\Gamma (j - \alpha_j + 1) n^r} \omega_s \left(f^{(r)} \frac{1}{n} \right),
\]

\(j = h + 1, \ldots, r; \ C_{r,s} \) is a constant independent of \(f \) and \(n \). Set

\[
(15) \quad l_j \equiv \sup_{x \in [-1, 1]} \left| \alpha_h^{-1} (x) \alpha_j (x) \right|, \ h \leq j \leq v.
\]

When \(j = 1, \ldots, h \) we derive

\[
(16) \quad \sup_{-1 \leq x \leq 1} \left| (D_{x-}^{\alpha_1} f) (x) - (D_{x-}^{\alpha_j} Q_n) (x) \right| \leq \frac{C_{r,s}}{n^r} \omega_s \left(f^{(r)} \frac{1}{n} \right) \left(\frac{1}{n!} \sum_{\tau = h}^{v} \frac{2^{\tau - \alpha_r}}{\Gamma (\tau - \alpha_r + 1)} \right)
\]

Finally it holds

\[
(17) \quad \sup_{-1 \leq x \leq 1} \left| f (x) - Q_n (x) \right| \leq \frac{C_{r,s}}{n^r} \omega_s \left(f^{(r)} \frac{1}{n} \right) \left[\frac{1}{n!} \sum_{\tau = h}^{v} \frac{2^{\tau - \alpha_r}}{\Gamma (\tau - \alpha_r + 1)} + 1 \right].
\]

Proof. Here let \(Q_n \) as in Corollary 3. Let \(\alpha_j > 0, j = 1, \ldots, r \), such that \(0 < \alpha_1 \leq 1 < \alpha_2 \leq 2 < \alpha_3 \leq 3 < \cdots < \alpha_v \leq r \). That is \(\left[\alpha_j \right] = j, j = 1, \ldots, r \).

We consider the left Caputo fractional derivatives

\[
(18) \quad (D_{x-}^{\alpha_1} f) (x) = \frac{1}{\Gamma (j - \alpha_j)} \int_{-1}^{x} (x - t)^{j - \alpha_j - 1} f^{(j)} (t) dt,
\]

and

\[
(19) \quad (D_{x-}^{\alpha_j} f) (x) = f^{(j)} (x),
\]

and

\[
(20) \quad (D_{x-}^{\alpha_j} Q_n) (x) = \frac{1}{\Gamma (j - \alpha_j)} \int_{-1}^{x} (x - t)^{j - \alpha_j - 1} Q_n^{(j)} (t) dt,
\]

\[
(21) \quad (D_{x-}^{\alpha_j} Q_n) (x) = Q_n^{(j)} (x); \ j = 1, \ldots, r.
\]

We notice that

\[
\left| (D_{x-}^{\alpha_1} f) (x) - (D_{x-}^{\alpha_j} Q_n) (x) \right|
\]

\[
\leq \frac{C_{r,s}}{n^r} \omega_s \left(f^{(r)} \frac{1}{n} \right) \left(\frac{1}{n!} \sum_{\tau = h}^{v} \frac{2^{\tau - \alpha_r}}{\Gamma (\tau - \alpha_r + 1)} \right)
\]

\[
\leq \frac{C_{r,s}}{n^r} \omega_s \left(f^{(r)} \frac{1}{n} \right) \left[\frac{1}{n!} \sum_{\tau = h}^{v} \frac{2^{\tau - \alpha_r}}{\Gamma (\tau - \alpha_r + 1)} + 1 \right].
\]
We proved for any $x \in [-1, 1]$ that

$$
(23) \quad |(D_{\ast-1}^\alpha f)(x) - (D_{\ast-1}^\alpha Q_n)(x)| \leq \frac{2^{j-\alpha_j}}{\Gamma(j - \alpha_j + 1)} C_{r,s} \omega_s \left(f^{(r)}, \frac{1}{n}\right) .
$$

Hence it holds

$$(24) \quad \sup_{-1 \leq x \leq 1} |(D_{\ast-1}^\alpha f)(x) - (D_{\ast-1}^\alpha Q_n)(x)| \leq \frac{2^{j-\alpha_j}}{\Gamma(j - \alpha_j + 1)} C_{r,s} \omega_s \left(f^{(r)}, \frac{1}{n}\right) ,$$

$j = 0, 1, \ldots, r.$

Above we set $D_{\ast-1}^0 f(x) = f(x), \ D_{\ast-1}^0 Q_n(x) = Q_n(x), \forall x \in [-1, 1],$ and $\alpha_0 = 0$, i.e., $[\alpha_0] = 0$.

Set also

$$
(25) \quad \rho_n := C_{r,s} \omega_s \left(f^{(r)}, \frac{1}{n}\right) \left(\sum_{j=h}^n l_j \frac{2^{j-\alpha_j}}{\Gamma(j - \alpha_j + 1)} n^{j-r}\right) .
$$

I. Suppose, throughout $[0, 1]$, $\alpha_h(x) \geq \alpha > 0$. Let $Q_n(x), x \in [-1, 1],$ be a real polynomial of degree $\leq n$ so that

$$
(26) \quad \max_{-1 \leq x \leq 1} \left|D_{\ast-1}^\alpha \left(f(x) + \rho_n \frac{x^h}{h!}\right) - (D_{\ast-1}^\alpha Q_n)(x)\right| \leq \frac{2^{j-\alpha_j}}{\Gamma(j - \alpha_j + 1)} C_{r,s} \omega_s \left(f^{(r)}, \frac{1}{n}\right) , \quad j = 0, 1, \ldots, r .
$$
When \(j = h + 1, \ldots, r \), then

\[
\max_{-1 \leq x \leq 1} \left| (D_{r+1}^a f) (x) - (D_{r+1}^a Q_n) (x) \right|
\leq \frac{2^{j-a_j}}{\Gamma (j - \alpha_j + 1)} \frac{C_{r,s}}{n^{r-j} \omega_s} \left(f^{(r)} \frac{1}{n} \right),
\]

proving (14).

For \(j = 1, \ldots, h \) we get

\[
D_{r+1}^a \left(\frac{x^h}{h!} \right) = \frac{1}{\Gamma (j - \alpha_j)} \int_{-1}^{x} (x-t)^{j-\alpha_j-1} (t+1)^{h-j-\lambda-1} dt
\]

(we see that \(t = t+1 - 1 \), and

\[
th^{-j} = (t+1-1)^{h-j} = \sum_{\lambda=0}^{h-j} \left(\begin{array}{c} h-j \\ \lambda \end{array} \right) (t+1)^{h-j-\lambda-1} (-1)^\lambda
\]

\[
= \frac{1}{(h-j)! \Gamma (j - \alpha_j)} \cdot \sum_{\lambda=0}^{h-j} (-1)^\lambda \left(\begin{array}{c} h-j \\ \lambda \end{array} \right) \frac{\Gamma (j - \alpha_j) \Gamma (h-j+\lambda+1)}{\Gamma (h-\alpha_j - \lambda + 1)} (x+1)^{h-\alpha_j-\lambda}
\]

\[
\sum_{\lambda=0}^{h-j} \lambda! \Gamma (h-\alpha_j - \lambda + 1) (x+1)^{h-\alpha_j-\lambda}.
\]

Hence for \(j = 1, \ldots, h \) we found that

\[
D_{r+1}^a \left(\frac{x^h}{h!} \right) = \sum_{\lambda=0}^{h-j} (-1)^\lambda \frac{(x+1)^{h-\alpha_j-\lambda}}{\lambda! \Gamma (h-\alpha_j - \lambda + 1)}
\]

Therefore we get from (26) that

\[
\max_{-1 \leq x \leq 1} \left| (D_{r+1}^a f) (x) + \rho_n \sum_{\lambda=0}^{h-j} (-1)^\lambda \frac{(x+1)^{h-\alpha_j-\lambda}}{\lambda! \Gamma (h-\alpha_j - \lambda + 1)} - (D_{r+1}^a Q_n) (x) \right|
\leq \frac{2^{j-a_j}}{\Gamma (j - \alpha_j + 1)} \frac{C_{r,s}}{n^{r-j} \omega_s} \left(f^{(r)} \frac{1}{n} \right), \ j = 1, \ldots, h.
\]

Therefore we get for \(j = 1, \ldots, h \), that

\[
\max_{-1 \leq x \leq 1} \left| ([D_{r+1}^a f] (x) - (D_{r+1}^a Q_n) (x)]
\]
\[(32) \leq \rho_n \sum_{\lambda=0}^{h-j} \frac{2^{h-\alpha_j-\lambda}}{\lambda! \Gamma (h - \alpha_j - \lambda + 1)} + \frac{2^{j-\alpha_j}}{\Gamma (j - \alpha_j + 1)} n^{r-j} \omega_s \left(f^{(r)}, \frac{1}{n}\right) \]

\[= C_{r,s} \omega_s \left(f^{(r)}, \frac{1}{n}\right) \left(\sum_{j=0}^{h-j} \frac{2^{j-\alpha_j}}{\Gamma (j - \alpha_j + 1)} n^{r-j} \right) \]

\[\cdot \left(\sum_{\lambda=0}^{h-j} \frac{2^{h-\alpha_j-\lambda}}{\lambda! \Gamma (h - \alpha_j - \lambda + 1)} + \frac{2^{j-\alpha_j}}{\Gamma (j - \alpha_j + 1)} n^{r-j} \omega_s \left(f^{(r)}, \frac{1}{n}\right) \right) \]

\[(33) = C_{r,s} \omega_s \left(f^{(r)}, \frac{1}{n}\right) \left(\sum_{j=h}^{k} \frac{2^{j-\alpha_j}}{\Gamma (j - \alpha_j + 1)} n^{r-j} \right) \]

\[\cdot \left(\sum_{\lambda=0}^{h-j} \frac{2^{h-\alpha_j-\lambda}}{\lambda! \Gamma (h - \alpha_j - \lambda + 1)} + \frac{2^{j-\alpha_j}}{\Gamma (j - \alpha_j + 1)} n^{r-j} \right) \]

\[(34) \leq C_{r,s} \omega_s \left(f^{(r)}, \frac{1}{n}\right) \left(\sum_{j=h}^{k} \frac{2^{j-\alpha_j}}{\Gamma (j - \alpha_j + 1)} n^{r-j} \right) \]

\[\left(\sum_{\lambda=0}^{h-j} \frac{2^{h-\alpha_j-\lambda}}{\lambda! \Gamma (h - \alpha_j - \lambda + 1)} + \frac{2^{j-\alpha_j}}{\Gamma (j - \alpha_j + 1)} \right) \]

Hence for \(j = 1, \ldots, h\) we derived (16):

\[(35) \max_{-1 \leq x \leq 1} |(D_{x-1}^{\alpha_j} f) (x) - (D_{a-1}^{\alpha_j} Q_n) (x)| \leq \frac{C_{r,s}}{n^{r-\tau} \omega_s \left(f^{(r)}, \frac{1}{n}\right)}. \]

\[\left(\sum_{\tau=1}^{v} \frac{2^{j-\alpha_j}}{\Gamma (j - \alpha_j + 1)} \right) \left(\sum_{\lambda=0}^{h-j} \frac{2^{h-\alpha_j-\lambda}}{\lambda! \Gamma (h - \alpha_j - \lambda + 1)} + \frac{2^{j-\alpha_j}}{\Gamma (j - \alpha_j + 1)} \right) \]

From (26) when \(j = 0\) we obtain

\[(36) \max_{-1 \leq x \leq 1} \left| f (x) + \rho_n \frac{x^h}{h!} - Q_n (x) \right| \leq \frac{C_{r,s}}{n^{r} \omega_s \left(f^{(r)}, \frac{1}{n}\right)} + \frac{2^{j-\alpha_j}}{\Gamma (j - \alpha_j + 1)} \]

And

\[(37) \max_{-1 \leq x \leq 1} |f (x) - Q_n (x)| \leq \frac{\rho_n}{h!} + \frac{C_{r,s}}{n^{r} \omega_s \left(f^{(r)}, \frac{1}{n}\right)} \]

\[= \frac{C_{r,s}}{h!} \omega_s \left(f^{(r)}, \frac{1}{n}\right) \left(\sum_{\tau=1}^{v} \frac{2^{j-\alpha_j}}{\Gamma (j - \alpha_j + 1)} n^{r-\tau} \right) + \frac{C_{r,s}}{n^{r} \omega_s \left(f^{(r)}, \frac{1}{n}\right)} \]

\[= \frac{C_{r,s}}{h!} \omega_s \left(f^{(r)}, \frac{1}{n}\right) \left[\frac{1}{h!} \sum_{\tau=1}^{v} \frac{2^{j-\alpha_j}}{\Gamma (j - \alpha_j + 1) n^{r-\tau}} + \frac{1}{n^{r}} \right] \]
that is proving (17).
Also if $0 \leq x \leq 1$, then

$$
\alpha_{h}^{-1}(x)L^{*}(Q_{n}(x))
= \alpha_{h}^{-1}(x)L^{*}(f(x)) + \rho_{n}\frac{(x+1)^{h-\alpha_{h}}}{\Gamma(h-\alpha_{h}+1)}
\geq \rho_{n}\left(\sum_{j=h}^{v} \alpha_{h}^{-1}(x)\alpha_{j}(x)\left[D_{r+1}^{\alpha_{j}}Q_{n}(x) - D_{r+1}^{\alpha_{j}}f(x) - \frac{\rho_{n}}{h!}D_{r+1}^{\alpha_{j}}x^{h}\right]\right)
\geq \rho_{n}\frac{(x+1)^{h-\alpha_{h}}-\rho_{n}}{\Gamma(h-\alpha_{h}+1)}\Gamma(h-\alpha_{h}+1) - \alpha_{j}(x)\left[D_{r+1}^{\alpha_{j}}Q_{n}(x) - D_{r+1}^{\alpha_{j}}f(x) - \frac{\rho_{n}}{h!}D_{r+1}^{\alpha_{j}}x^{h}\right]
\leq \rho_{n}\left(\frac{1-\Gamma(h-\alpha_{h}+1)}{\Gamma(h-\alpha_{h}+1)}\right) \geq 0.
$$

Explanation: We know that $\Gamma(1) = 1$, $\Gamma(2) = 1$, and Γ is convex and positive on $(0, \infty)$. Here $0 \leq h-\alpha_{h} < 1$ and $1 \leq h-\alpha_{h}+1 < 2$. Thus $\Gamma(h-\alpha_{h}+1) \leq 1$ and $1 - \Gamma(h-\alpha_{h}+1) \geq 0$. Hence $L^{*}(Q_{n}(x)) \geq 0$, $x \in [0, 1]$.

II. Suppose on $[0, 1]$ that $\alpha_{h}(x) \leq \beta < 0$. Let $Q_{n}(x), x \in [-1, 1]$, be a real polynomial of degree $\leq n$ so that

$$
\max_{-1 \leq x \leq 1} \left|D_{r+1}^{\alpha_{j}}\left(f(x) - \rho_{n}\frac{x^{h}}{h!}\right) - (D_{r+1}^{\alpha_{j}}Q_{n})(x)\right|\leq \frac{2^{j-\alpha_{j}}C_{r,s}}{\Gamma(j-\alpha_{j}+1)}\omega_{s}\left(f^{(r)}, \frac{1}{n}\right), j = 0, 1, \ldots, r.
$$

Similarly we obtain again inequalities of convergence, see (14), (16) and (17).
Also if $0 \leq x \leq 1$, then

$$
\alpha_{h}^{-1}(x)L^{*}(Q_{n}(x))
= \alpha_{h}^{-1}(x)L^{*}(f(x)) - \rho_{n}\frac{(x+1)^{h-\alpha_{h}}}{\Gamma(h-\alpha_{h}+1)}
\geq \rho_{n}\left(\sum_{j=h}^{v} \alpha_{h}^{-1}(x)\alpha_{j}(x)\left[D_{r+1}^{\alpha_{j}}Q_{n}(x) - D_{r+1}^{\alpha_{j}}f(x) + \frac{\rho_{n}}{h!}D_{r+1}^{\alpha_{j}}x^{h}\right]\right)
\leq \rho_{n}\frac{(x+1)^{h-\alpha_{h}}}{\Gamma(h-\alpha_{h}+1)} + \rho_{n}\left(\sum_{j=h}^{v} \alpha_{h}^{-1}(x)\alpha_{j}(x)\left[D_{r+1}^{\alpha_{j}}Q_{n}(x) - D_{r+1}^{\alpha_{j}}f(x) + \frac{\rho_{n}}{h!}D_{r+1}^{\alpha_{j}}x^{h}\right]\right).
$$
\[\rho_n \left(1 - \frac{(x+1)^{h-\alpha_h}}{\Gamma(h) \Gamma(h-\alpha_h+1)} \right) = \rho_n \frac{\Gamma(h - \alpha_h + 1) - (x+1)^{h-\alpha_h}}{\Gamma(h - \alpha_h + 1)} \]

\[\leq \rho_n \frac{1 - (x+1)^{h-\alpha_h}}{\Gamma(h - \alpha_h + 1)} \leq 0, \]

and hence on \([0,1]\) again holds \(L^*(Q_n(x)) \geq 0\). \(\square\)

Remark 7 (to Theorem 6). Suppose that \(\alpha_j(x), j = h, h+1, \ldots, v\) are continuous functions on \([-1,1]\), and we have on \([0,1]\) only \(L^*(f) > 0\). Relax the condition \(\alpha_h(x)\) is either \(\geq \alpha > 0\) or \(\leq \beta < 0\) on \([0,1]\). Let \(Q_n\) be the polynomial of degree \(\leq n\) corresponding to \(f\) from (24).

Then \(D_{h-1}^{\alpha_j}Q_n\) converges uniformly to \(D_{h-1}^{\alpha_j}f\) at a higher rate given by inequality (24), in particular for \(0 \leq j \leq h\). Moreover, because \(L^*(Q_n)\) converges uniformly to \(L^*(f)\) on \([-1,1]\), \(L^*(Q_n) > 0\) on \([0,1]\) for sufficiently large \(n\).

References

Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, USA
E-mail address: ganastss@memphis.edu