DOI QR코드

DOI QR Code

Poly(1,2-propylene glycol adipate) as an Environmentally Friendly Plasticizer for Poly(vinyl chloride)

폴리염화비닐의 친환경 가소제로서 Poly(1,2-propylene glycol adipate)

  • Zhao, Yan (Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry) ;
  • Liang, Hongyu (Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry) ;
  • Wu, Dandan (Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry) ;
  • Bian, Junjia (Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry) ;
  • Hao, Yanping (Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry) ;
  • Zhang, Guibao (Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry) ;
  • Liu, Sanrong (Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry) ;
  • Zhang, Huiliang (Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry) ;
  • Dong, Lisong (Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry)
  • Received : 2014.06.12
  • Accepted : 2014.08.19
  • Published : 2015.03.25

Abstract

Poly(1,2-propylene glycol adipate) (PPA) was used as an environmentally friendly plasticizer in flexible poly(vinyl chloride) (PVC). Thermal, mechanical, and rheological properties of the PVC/PPA blends were characterized by differential scanning calorimetry, dynamic mechanical analysis, tensile test, scanning electron microscopy and small amplitude oscillatory shear rheometry. The results showed that PPA lowered the glass transition temperature of PVC. The introduction of PPA could decrease tensile strength and Young's modulus of the PVC/PPA blends; however, elongation-at-break was dramatically increased due to the plastic deformation. The plasticization effect of PPA was also manifested by the decrease of dynamic storage modulus and viscosity in the melt state of the blends. The results indicated that PPA had a good plasticizing effect on PVC.

Keywords

References

  1. M. Rahman and C. S. Brazel, Prog. Polym. Sci., 29, 1223 (2004). https://doi.org/10.1016/j.progpolymsci.2004.10.001
  2. Y. S. Soong, R. E. Cohen, and M. C. Boyce, Ploymer, 48, 1410 (2007). https://doi.org/10.1016/j.polymer.2007.01.021
  3. A. Lindstrom and M Hakkarainen, J. Appl. Polym. Sci., 100, 2180 (2006). https://doi.org/10.1002/app.23633
  4. G. Latini, C. D. Felice, and A. Verrotti, Reprod. Toxicol., 19, 27 (2004). https://doi.org/10.1016/j.reprotox.2004.05.011
  5. J. A. Tickner, T. Schettler, T. Guidotti, M. McCally, and M. Rossi, Am. J. Ind. Med., 39, 100 (2001). https://doi.org/10.1002/1097-0274(200101)39:1<100::AID-AJIM10>3.0.CO;2-Q
  6. European Commission Health & Consumer protection directorate-general, Directorate C-Scientific Opinions, C2. Opinion on Medical Devices Containing DEHP plasticized PVC; Neonates and Other Groups Possibly at Risk from DEHP Toxicity (2002).
  7. S. S. Hill, B. S. Shaw, and A. H. B. Wu, Clin. Chim. Acta, 304, 1 (2001). https://doi.org/10.1016/S0009-8981(00)00411-3
  8. G. Latini, C. D. Felice, G. Presta, A. D. Vecchio, I. Paris, F. Ruggieri, and P. Mazzeo, Environ. Health. Persp., 111, 1783 (2003). https://doi.org/10.1289/ehp.6202
  9. N. H. Kleinsasser, U. A. Harreus, E. R. Kastenbauer, B. C. Wallner, A. W. Sassen, R. Staudenmaier, and A. W. Rettenmeier, Toxicol. Lett., 148, 83 (2004). https://doi.org/10.1016/j.toxlet.2003.12.013
  10. L. G. Krauskopf, J. Vinyl Add. Technol., 9, 159 (2003). https://doi.org/10.1002/vnl.10079
  11. A. Lindstrom and M. Hakkarainen, J. Appl. Polym. Sci., 100, 2180 (2006). https://doi.org/10.1002/app.23633
  12. H. L. Zhang, J. Y. Fang, H. H. Ge, L. J. Han, X. M. Wang, Y. P. Hao, C. Y. Han, and L. S. Dong, Polym. Eng. Sci., 53, 112 (2013). https://doi.org/10.1002/pen.23238
  13. X. H. Li, Y. Xiao, B. Wang, Y. Tang; Y. Q. Lu, and C. J. Wang, J. Appl. Polym. Sci., 124, 1737 (2012). https://doi.org/10.1002/app.35183
  14. X. J. Loh, S. H. Goh, and J. Li, Biomacromolecules, 8, 585 (2007). https://doi.org/10.1021/bm0607933
  15. B. Yang, Y. Bai, and Y. Cao, J. Appl. Polym. Sci., 115, 2178 (2010). https://doi.org/10.1002/app.31310
  16. A. Marcilla and S. Garcia, J. Anal. Appl. Pyroly., 71, 458 (2004).
  17. A. J. Nijenhuis, E. Colstee, D. W. Grijpma, and A. J. Pennings, Polymer, 37, 5849 (1996). https://doi.org/10.1016/S0032-3861(96)00455-7
  18. A. Agrawal, A. D. Saran, S. S. Rath, and A. Khanna, Polymer, 45, 8603 (2004). https://doi.org/10.1016/j.polymer.2004.10.022
  19. B. L. Shah and V. V. Shertukde, J. Appl. Polym. Sci., 90, 3278 (2003). https://doi.org/10.1002/app.13049
  20. N. Kakuta, J. Mater. Cycles Waste Manag., 11, 23 (2009). https://doi.org/10.1007/s10163-008-0214-4
  21. Y. B. Liu, W. Q. Liu, and M. H. Hou, Polym. Degrad. Stabil., 92, 1565 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.05.003
  22. M. Khan and F. Kanwal, J. Chem. Soc. Pakistan., 19, 8 (1997).