DOI QR코드

DOI QR Code

Performance Analysis of Pressure-retarded Osmosis Power Using Biomimetic Aquaporin Membrane

생체모방형 아쿠아포린 분리막을 이용한 압력지연삼투 발전 성능분석

  • Choi, Wook (Greenhouse Gas Research Center, Korea Institute of Energy Research (KIER)) ;
  • Bae, Harim (Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER)) ;
  • Lee, Hyung-Keun (Greenhouse Gas Research Center, Korea Institute of Energy Research (KIER)) ;
  • Lee, Jonghwi (Department of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Chul Ho (Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER))
  • 최욱 (한국에너지기술연구원) ;
  • 배하림 (한국에너지기술연구원 제주글로벌연구센터) ;
  • 이형근 (한국에너지기술연구원) ;
  • 이종휘 (중앙대학교 화학공학과) ;
  • 김종학 (연세대학교 화공생명공학과) ;
  • 박철호 (한국에너지기술연구원 제주글로벌연구센터)
  • Received : 2014.08.18
  • Accepted : 2014.09.25
  • Published : 2015.03.25

Abstract

Salinity gradient power is a system which sustainably generates electricity for 24 hrs, if the system is constructed at a certain place where both seawater and river water are consistently pumped. Since power is critically determined by the water flux and the salt rejection, a membrane of water-semipermeable aquaporin protein in cell membranes was studied for pressure-retarded osmosis. NaCl was used as a salt, and $NaNO_3$ was used as a candidate to check the ion selectivity. The water flux of biomimetic aquaporin membranes was negligible at a concentration below 2M. Also, there is no remarkable dependence of water flux and ion selectivity on concentrations higher than 3M. Therefore, the biomimetic aquaporin membrane could not be applied into pressure-retarded osmosis; however, if a membrane could overcome the current limitations, the properties shown by natural cells could be accomplished.

염분차발전은 해수와 담수가 지속적으로 공급되는 곳에 설치된다면 다른 신재생에너지원에 비해 24시간 지속적으로 전력을 생산할 수 있는 시스템이다. 발전량은 물투과도 및 염배제율에 의해 결정되기 때문에, 세포막에 존재하는 물반투과 단백질인 아쿠아포린 분리막을 이용한 압력지연삼투법을 연구하였다. 염으로는 NaCl과 이온선택성 확인을 위하여 $NaNO_3$이 사용되었다. 생체모방형 아쿠아포린 분리막의 물투과량은 2 M 이하의 농도에서 거의 나타나지 않았다. 더욱이, 3 M 이상의 농도에서 유도용액의 농도에 따른 물투과량 차이 및 이온선택도 또한 크게 나타나지 않았다. 따라서 생체모방형 아쿠아포린 분리막은 압력지연삼투 공정에 적용하기 어렵지만, 만약 이를 극복할 수 있는 구조체가 개발된다면 세포에서의 성능치를 기대할 수 있을 것이다.

Keywords

Acknowledgement

Supported by : 한국에너지기술연구원

References

  1. P. S. Vacancies, Inter. Energy Agency Report, 1, 1 (2012).
  2. R. E. Pattle, Nature, 174, 660 (1954). https://doi.org/10.1038/174660a0
  3. S. E. Skilhagen, J. E. Dugstad, and R. J. Aaberg, Desalination 220, 476 (2008). https://doi.org/10.1016/j.desal.2007.02.045
  4. C. E. Reid and E. J. Breton, J. Appl. Polym. Sci., 1, 133 (1595).
  5. I. L. Alsvik and M-B. Hagg, Polymers, 5, 303 (2013). https://doi.org/10.3390/polym5010303
  6. K. Scott, "Water purification", in Handbook of industrial membrane, K. Scott, Editor, Elsevier Science, Oxford, Vol 2, p 489 (1990).
  7. R. Zimmermann, Ang. Chem. Int. Ed., 5, 749 (1966).
  8. L. Credali and P. Parrini, Polymer, 12, 717 (1971). https://doi.org/10.1016/0032-3861(71)90087-5
  9. K. P. Lee, T. C. Arnot, and D. Mattia, J. Membr. Sci., 370, 1 (2011). https://doi.org/10.1016/j.memsci.2010.12.036
  10. J. E. Cadotte, U.S. Patent 4277344A (1981).
  11. B.-H. Jeong, E. Hoek, U. Yan, A. Subramani, X. Huang, G. Hurwitz, A. Ghosh, and A. Jawor, J. Membr. Sci., 294, 1 (2007). https://doi.org/10.1016/j.memsci.2007.02.025
  12. E. S. Kim, G. Hwang, M. G. EI-Din, and L. Yang, J. Membr. Sci., 394, 37 (2012).
  13. M. Whitby, L. Cagnon, M. Thanou, and N. Quirke, Nano Lett., 8, 2632 (2008). https://doi.org/10.1021/nl080705f
  14. M. Hu and B. Mi, Envir. Sci. Tech., 47, 3715 (2013). https://doi.org/10.1021/es400571g
  15. C.Y. Tang, Y. Zhao, R. Wang, C. Helix-Nielsen, and A. G. Fane, Desalination, 308, 34 (2013). https://doi.org/10.1016/j.desal.2012.07.007
  16. M. Kumar, M. Grzelakowski, J. Zilles, M. Clark, and W. Meier, Proceedings of the National Academy of Sciences, 104, 20719 (2007). https://doi.org/10.1073/pnas.0708762104
  17. A. Achill, T. Y. Cath, and A. E. Childress, J. Membr. Sci., 343, 42 (2009). https://doi.org/10.1016/j.memsci.2009.07.006
  18. E. Tajkhorshid, P. Nollert, M. Jensen, L. J. W. Miercke, J. O'connell, R. M. Stroud, and K. Schulten, Science, 296, 525 (2002). https://doi.org/10.1126/science.1067778
  19. J. A. Wasastjerna, Soc. Sci. Fenn. Comm. Phys. Math., 37, 1A25 (1923).

Cited by

  1. Biomimetic Membranes as a Technology Platform: Challenges and Opportunities vol.8, pp.3, 2018, https://doi.org/10.3390/membranes8030044