DOI QR코드

DOI QR Code

Preparation of MWCNTs/Poly(methyl methacrylate) Composite Particles via the Emulsion Polymerization of Methyl Methacrylate Using MWCNTs Modified by Silanization Reaction and Their Morphological Characteristics

실란화 반응으로 표면 개질된 다중벽 탄소나노튜브(MWCNTs)와 Methyl Methacrylate의 유화중합을 통한 MWCNTs/Poly(methyl methacrylate) 복합 입자 제조 및 그 형태학적 특성

  • 권재범 (계명대학교 공과대학 화학공학과) ;
  • 박성환 (계명대학교 공과대학 화학공학과) ;
  • 김성훈 (계명대학교 공과대학 화학공학과) ;
  • 조지은 (케이디켐 기술연구소) ;
  • 한창우 (케이디켐 기술연구소) ;
  • 하기룡 (계명대학교 공과대학 화학공학과)
  • Received : 2014.09.15
  • Accepted : 2014.10.14
  • Published : 2015.03.25

Abstract

In this study, multi-walled carbon nanotubes (MWCNTs) were oxidized with a mixture of nitric acid and sulfuric acid. After oxidation, oxidized MWCNTs were treated with thionyl chloride ($SOCl_2$) and 1,4-butanediol (BD) in sequence at room temperature to introduce hydroxyl groups on the surface of MWCNTs. The prepared MWCNT-OH was silanized with 3-methacryloxypropyltrimethoxylsilane (MPTMS) to make MWCNT-MPTMS. The MWCNT-MPTMS was used as fillers in emulsion polymerization to make MWCNT-MPTMS/PMMA composite particles with 3 kinds of emulsifiers, hexadecyltrimethylammoniumbromide (CTAB) as a cationic, sodium dodecylbenzene sulfonate (SDBS) as an anionic and polyethylene glycol tert-octylphenyl ether (Triton X-114) as a nonionic emulsifier. Morphologies of composite emulsions were confirmed by a particle size analyzer (PSA) and a scanning electron microscope (SEM). Morphologies of emulsion polymerized MWCNT-MPTMS/PMMA with SDBS showed more uniform particle size distribution compared to those of other two emulsifiers used emulsions. MWCNT-MPTMS/PMMA showed $3.4^{\circ}C$ higher $T_g$ compared to pristine MWCNT/PMMA due to covalent bond formation at interface of MWCNT-MPTMS and PMMA.

본 연구에서는 다중벽 탄소나노튜브(MWCNTs)를 질산과 황산의 혼산으로 산화시켜 표면에 카르복시기를 도입 후, $SOCl_2$와 1,4-butanediol을 사용하여 MWCNT-OH를 제조하였다. 제조된 MWCNT-OH는 3-methacryloxypropyltrimethoxylsilane(MPTMS)와 실란화 반응으로 methacrylate기가 도입된 MWCNT-MPTMS를 제조하였다. MWCNT-MPTMS와 methyl methacrylate(MMA)를 사용하여 유화중합법으로 MWCNT-MPTMS/PMMA 복합 입자를 제조하였다. 음이온 계면 활성제인 sodium dodecylbenzene sulfonate(SDBS)를 사용하여 유화중합한 MWCNT-MPTMS/PMMA는 균일한 입도, 좁은 입도분포 및 계면에서의 화학결합으로 인하여 $T_g$가 순수 MWCNT를 사용하여 중합한 시료보다 $3.4^{\circ}C$ 높아짐을 확인하였다.

Keywords

References

  1. S. H. Hong, M. H. Kim, C. K. Hong, D. S. Jung, and S. E. Shim, Synthetic Met., 158, 900 (2008). https://doi.org/10.1016/j.synthmet.2008.06.023
  2. C. H. Yoon and H. S. Lee, Polym. Sci. Technol., 18, 4 (2007).
  3. S. J. Park, M. S. Cho, S. T. Lim, H. J. Choi, and M. S. Jhon, Macromol. Rapid Commun., 24, 1070 (2003). https://doi.org/10.1002/marc.200300089
  4. X. Xie and L. Gao, Carbon, 45, 2365 (2007). https://doi.org/10.1016/j.carbon.2007.07.014
  5. R. B. Mathur, S. Pande, B. P. Singh, and T. L. Dhami, Polym. Compos., 29, 717 (2008). https://doi.org/10.1002/pc.20449
  6. A. I. Oliva-Aviles, F. Aviles, and V. Sosa, Carbon, 49, 2989 (2011). https://doi.org/10.1016/j.carbon.2011.03.017
  7. H. J. Kim, H. J. Lee, and J. W. Park, J. Adhesion and Interface, 12, 43 (2011).
  8. P. G. Ma, J. K. Kim, and B. Z. Tang, Carbon, 44, 3232 (2006). https://doi.org/10.1016/j.carbon.2006.06.032
  9. Y. T. Joo, K. H. Jung, and Y. S. Kim, Polymer(Korea), 35, 395 (2011).
  10. D. S. Jeong and B. U. Nam, Polymer(Korea), 35, 17 (2011).
  11. H. J. Lee, J. S. Park, S. R. Lee, J. M. Kim, and S. M. Chang, Korean Chem. Eng. Res., 47, 470 (2009).
  12. V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, and C. Galiotis, Carbon, 46, 833 (2008). https://doi.org/10.1016/j.carbon.2008.02.012
  13. L. A. S. A. Prado, A. Kopyniecka, S. Chandrasekaran, G. Broza, Z. Roslaniec, and K. Schulte, Macromol. Mater. Eng., 298, 359 (2013). https://doi.org/10.1002/mame.201200066
  14. F. Aviles, J. V. Cauich-Rodriguez, J. A. Rodriguez-Gonzalez, and A. May-Pat, eXPRESS Polym. Lett., 5, 766 (2011). https://doi.org/10.3144/expresspolymlett.2011.75
  15. I. C. Park, M. Park, J. K. Kim, and H. J. Lee, Macromol. Res., 6, 498 (2007).
  16. H. J. Lee, S. H. Jang, S. M. Chang, and J. M. Kim, Korean Chem. Eng. Res., 48, 609 (2010).
  17. S. M. Lee and K. R. Ha, Polymer(Korea), 37, 777 (2013).
  18. H. S. Jang, J. H. Hong, J. W. Lee, and S. E. Shim, Korean Chem. Eng. Res., 46, 669 (2008).
  19. P. Kumar and H. B. Bohidar, Physicochem. Eng. Aspects, 361, 13 (2010). https://doi.org/10.1016/j.colsurfa.2010.03.009
  20. Y. Chen, N. Gunasinghe, X. Q. Wang, and Y. Pang, RSC Adv., 3, 25097 (2013). https://doi.org/10.1039/c3ra43654c
  21. S. M. Choi, C. W. Doh, and T. H. Kim, Korean Patent 10-0874219 (2006).
  22. H. J. Jin, S. J. Myeong, and M. S. Kang, Korean Patent 10-0728642 (2006).
  23. M. Colilla, A. J. Salinas, and M. V. Regi, Chem. Mater., 18, 5676 (2006). https://doi.org/10.1021/cm0612043
  24. S. J. Doh, C. Kim, K. S. Hwang, S. G. Lee, S. J. Lee, and H. Y. Kim, Korean Ind. Eng. Chem., 11, 574 (2007).
  25. C. Kim, S. J. Doh, K. S. Hwang, S. G. Lee, S. J. Lee, and H. Y. Kim, Korean Ind. Eng. Chem., 11, 578 (2007).
  26. M. Y. Jin, K. H. Park, and H. K. Jeong, Polym. Sci. Technol., 13, 180 (2002).