DOI QR코드

DOI QR Code

Deuteromethylactin B from a Freshwater-derived Streptomyces sp.

  • Shaikh, Anam F. (Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago) ;
  • Elfeki, Maryam (Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago) ;
  • Landolfa, Samantha (Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago) ;
  • Tanouye, Urszula (Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago) ;
  • Green, Stefan J. (Department of Biological Sciences, University of Illinois at Chicago) ;
  • Murphy, Brian T. (Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago)
  • Received : 2015.07.04
  • Accepted : 2015.08.13
  • Published : 2015.12.31

Abstract

Compared to their terrestrial and marine counterparts, little is known about the capacity of freshwater-derived actinomycete bacteria to produce novel secondary metabolites. In the current study, we highlight the disparities that exist between cultivation-independent and -dependent analyses of actinomycete communities from four locations in Lake Michigan sediment. Furthermore, through phylogenetic analysis of strains isolated from these locations, we identified a Streptomyces sp., strain B025, as being distinct from other Streptomyces spp. isolated from sediment. Upon fermentation this strain produced a rare class of eight-membered lactone secondary metabolites, which have been for their antitumor properties. We used spectroscopic and chemical derivitization techniques to characterize octalactin B (1) in addition to its corresponding novel, unnatural degradation product (2).

Keywords

References

  1. Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2012, 75, 311-335. https://doi.org/10.1021/np200906s
  2. Fenical, W.; Jensen, P. R. Nat. Chem. Biol. 2006, 2, 666-673. https://doi.org/10.1038/nchembio841
  3. Gerwick, W. H.; Moore, B. S. Chem. Biol. 2012, 19, 85-98. https://doi.org/10.1016/j.chembiol.2011.12.014
  4. Mullowney, M. W.; Hwang, C. H.; Newsome, A. G.; Wei, X.; Tanouye, U.; Wan, B.; Carlson, S.; Barranis, N. J.; OhAinmhire, E.; Chen, W. L.; Krishnamoorthy, K.; White, J.; Blair, R.; Lee, H.; Burdette, J. E.; Rathod, P. K.; Parish, T.; Cho, S.; Franzblau, S. G.; Murphy, B. T. ACS Infect. Dis. 2015, 1, 168-174. https://doi.org/10.1021/acsinfecdis.5b00005
  5. Carlson, S.; Tanouye, U.; Omarsdottir, S.; Murphy, B. T. J. Nat. Prod. 2015, 78, 381-387. https://doi.org/10.1021/np500767u
  6. Caporaso, J. G.; Lauber, C. L.; Walters, W. A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S. M.; Betley, J.; Fraser, L.; Bauer, M.; Gormley, N.; Gilbert, J. A.; Smith, G.; Knight, R. ISME J. 2012, 6, 1621-1624. https://doi.org/10.1038/ismej.2012.8
  7. Caporaso, J. G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F. D.; Costello, E. K.; Fierer, N.; Pena, A. G.; Goodrich, J. K.; Gordon, J. I.; Huttley, G. A.; Kelley, S. T.; Knights, D.; Koenig, J. E.; Ley, R. E.; Lozupone, C. A.; McDonald, D.; Muegge, B. D.; Pirrung, M.; Reeder, J.; Sevinsky, J. R.; Turnbaugh, P. J.; Walters, W. A.; Widmann, J.; Yatsunenko, T.; Zaneveld, J.; Knight, R. Nat. Methods. 2010, 7, 335-336. https://doi.org/10.1038/nmeth.f.303
  8. Edgar, R. C. Bioinformatics 2010, 26, 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
  9. Gihring, T. M.; Green, S. J.; Schadt, C. W. Environ. Microbiol. 2012, 14, 285-290. https://doi.org/10.1111/j.1462-2920.2011.02550.x
  10. McDonald, D.; Price, M. N.; Goodrich, J.; Nawrocki, E. P.; DeSantis, T. Z.; Probst, A.; Andersen, G. L.; Knight, R.; Hugenholtz, P. ISME J. 2012, 6, 610-618. https://doi.org/10.1038/ismej.2011.139
  11. Wang, Q.; Garrity, G. M.; Tiedje, J. M.; Cole, J. R. Appl. Environ. Microbiol. 2007, 73, 5261-5267. https://doi.org/10.1128/AEM.00062-07
  12. Clarke, K. R. Aust. J. Ecol. 1993, 18, 117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
  13. Green, S. J.; Prakash, O.; Jasrotia, P.; Overholt, W. A.; Cardenas, E.; Hubbard, D.; Tiedje, J. M.; Watson, D. B.; Schadt, C. W.; Brooks, S. C.; Kostka, J. E. Appl. Environ. Microbiol. 2012, 78, 1039-1047. https://doi.org/10.1128/AEM.06435-11
  14. DeSantis, T. Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E. L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G. L. Appl. Environ. Microbiol. 2006, 72, 5069-5072. https://doi.org/10.1128/AEM.03006-05
  15. Ludwig, W.; Strunk, O.; Westram, R.; Richter, L.; Meier, H.; Yadhukumar, Buchner, A.; Lai, T.; Steppi, S.; Jobb, G.; Forster, W.; Brettske, I.; Gerber, S.; Ginhart, A. W.; Gross, O.; Grumann, S.; Hermann, S.; Jost, R.; Konig, A.; Liss, T.; Lussmann, R.; May, M.; Nonhoff, B.; Reichel, B.; Strehlow, R.; Stamatakis, A.; Stuckmann, N.; Vilbig, A.; Lenke, M.; Ludwig, T.; Bode, A.; Schleifer, K. H. Nucleic Acids Res. 2004, 32, 1363-1371. https://doi.org/10.1093/nar/gkh293
  16. Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. Mol. Biol. Evol. 2011, 28, 2731-2739. https://doi.org/10.1093/molbev/msr121
  17. Ronquist, F.; Huelsenbeck, J. P. Bioinformatics 2003, 19, 1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  18. Jensen, P. R.; Moore, B. S.; Fenical, W. Nat. Prod. Rep. 2015, 32, 738-751. https://doi.org/10.1039/C4NP00167B
  19. Newton, R. J.; Jones, S. E.; Eiler, A.; McMahon, K. D.; Bertilsson, S. Microbiol. Mol. Biol. Rev. 2011, 75, 14-49. https://doi.org/10.1128/MMBR.00028-10
  20. Glockner, F. O.; Zaichikov, E.; Belkova, N.; Denissova, L.; Pernthaler, J.; Pernthaler, A.; Amann, R. Appl. Environ. Microbiol. 2000, 66, 5053-5065. https://doi.org/10.1128/AEM.66.11.5053-5065.2000
  21. Zwart, G.; Crump, B. C.; Kamst-van Agterveld, M. P. K. V.; Hagen, F.; Han, S. K. Aquat. Microb. Ecol. 2002, 28, 141-155. https://doi.org/10.3354/ame028141
  22. Warnecke, F.; Amann, R.; Pernthaler, J. Environ. Microbiol. 2004, 6, 242-253. https://doi.org/10.1111/j.1462-2920.2004.00561.x
  23. Newton, R. J.; Jones, S. E.; Helmus, M. R.; McMahon, K. D. Appl. Environ. Microbiol. 2007, 73, 7169-7176. https://doi.org/10.1128/AEM.00794-07
  24. Hahn, M. W.; Lunsdorf, H.; Wu, Q.; Schauer, M.; Hofle, M. G.; Boenigk, J.; Stadler, P. Appl. Environ. Microbiol. 2003, 69, 1442-1451. https://doi.org/10.1128/AEM.69.3.1442-1451.2003
  25. Hahn, M. W. Int. J. Syst. Evol. Microbiol. 2009, 59, 112-117. https://doi.org/10.1099/ijs.0.001743-0
  26. Tapiolas, D. M.; Roman, M.; Fenical, W.; Stout, T. J.; Clardy, J. J. Am. Chem. Soc. 1991, 113, 4682-4683. https://doi.org/10.1021/ja00012a048
  27. Dinh, M. T.; Bouzbouz, S.; Peglion, J. L.; Cossy, J. Tetrahedron 2008, 64, 5703-5710. https://doi.org/10.1016/j.tet.2008.04.026
  28. O'Sullivan, P. T.; Buhr, W.; Fuhry, M. A. M.; Harrison, J. R.; Davies, J. E.; Feeder, N.; Marshall, D. R.; Burton, J. W.; Holmes, A. B. J. Am. Chem. Soc. 2004, 126, 2194-2207. https://doi.org/10.1021/ja038353w
  29. Shiina, I.; Hashizume, M.; Yamai, Y. S.; Oshiumi, H.; Shimazaki, T.; Takasuna, Y. J.; Ibuka, R. Chemistry. 2005, 11, 6601-6608. https://doi.org/10.1002/chem.200500417
  30. Dinh, M. T.; BouzBouz, S.; Peglion, J. L.; Cossy, J. Synlett. 2005, 18, 2851-2853.
  31. Shiina, I.; Oshiumi, H.; Hashizume, M.; Yamai, Y. S.; Ibuka, R. Tetrahedron Lett. 2004, 45, 543-547. https://doi.org/10.1016/j.tetlet.2003.10.213
  32. Radosevich, A. T.; Chan, V. S.; Shih, H. W.; Toste, F. D. Angew. Chem. Int. Ed Engl. 2008, 47, 3755-3758. https://doi.org/10.1002/anie.200800554
  33. Hoye, T. R.; Jeffrey, C. S.; Shao, F. Nat. Protoc. 2007, 2, 2451- 2458. https://doi.org/10.1038/nprot.2007.354
  34. Sullivan, G. R.; Dale, J. A.; Mosher, H. S. J. Org. Chem. 1973, 38, 2143-2147. https://doi.org/10.1021/jo00952a006
  35. Lee, J. Y.; Lee, J. Y.; Jung, H. W.; Hwang, B. K. Int. J. Syst. Evol. Microbiol. 2005, 55, 257-262. https://doi.org/10.1099/ijs.0.63168-0

Cited by

  1. Complete Genome of Micromonospora sp. Strain B006 Reveals Biosynthetic Potential of a Lake Michigan Actinomycete vol.81, pp.9, 2018, https://doi.org/10.1021/acs.jnatprod.8b00394
  2. Diazaquinomycin Biosynthetic Gene Clusters from Marine and Freshwater Actinomycetes vol.82, pp.4, 2019, https://doi.org/10.1021/acs.jnatprod.8b01028
  3. Freshwater Actinobacteria from sediments of the deep and ancient Lake Baikal (Russia) and their genetic potential as producers of secondary metabolites vol.84, pp.1, 2020, https://doi.org/10.3354/ame01923