DOI QR코드

DOI QR Code

Viriditoxin Induces G2/M Cell Cycle Arrest and Apoptosis in A549 Human Lung Cancer Cells

  • Park, Ju Hee (College of Pharmacy, Pusan National University) ;
  • Noh, Tae Hwan (College of Pharmacy, Pusan National University) ;
  • Wang, Haibo (College of Pharmacy, Pusan National University) ;
  • Kim, Nam Deuk (College of Pharmacy, Pusan National University) ;
  • Jung, Jee H. (College of Pharmacy, Pusan National University)
  • Received : 2015.08.05
  • Accepted : 2015.09.24
  • Published : 2015.12.31

Abstract

Viriditoxin is a fungal metabolite isolated from Paecilomyces variotii, which was derived from the giant jellyfish Nemopilema nomurai. Viriditoxin was reported to inhibit polymerization of FtsZ, which is a key protein for bacterial cell division and a structural homologue of eukaryotic tubulin. Both tubulin and FtsZ contain a GTP-binding domain, have GTPase activity, assemble into protofilaments, two-dimensional sheets, and protofilament rings, and share substantial structural identities. Accordingly, we hypothesized that viriditoxin may inhibit eukaryotic cell division by inhibiting tubulin polymerization as in the case of bacterial FtsZ inhibition. Docking simulation of viriditoxin to ${\beta}-tubulin$ indicated that it binds to the paclitaxel-binding domain and makes hydrogen bonds with Thr276 and Gly370 in the same manner as paclitaxel. Viriditoxin suppressed growth of A549 human lung cancer cells, and inhibited cell division with G2/M cell cycle arrest, leading to apoptotic cell death.

Keywords

References

  1. Liu, J.; Li, F.; Kim, E. L.; Hong, J. K.; Jung, J. H. Nat. Prod. Sci. 2013, 19, 61-65.
  2. Wang, J.; Galgoci, A.; Kodali, S.; Herath, K. B.; Jayasuriya, H.; Dorso, K.; Vicente, F.; Gonzalez, A.; Cully, D.; Bramhill, D.; Singh, S. J. Biol. Chem. 2003, 278, 44424-44428. https://doi.org/10.1074/jbc.M307625200
  3. Wong, D. T.; Hamill, R. L. Biochem. Biophys. Res. Commun. 1976, 71, 332-338. https://doi.org/10.1016/0006-291X(76)90287-4
  4. Lowe, J.; Amos, L. A. Nature 1998, 391, 203-206. https://doi.org/10.1038/34472
  5. Tian, W.; Xu, D.; Deng, Y. C. Pharmazie 2012, 67, 811-816.
  6. Erickson, H. P. Cell 1995, 80, 367-370. https://doi.org/10.1016/0092-8674(95)90486-7
  7. Bi, E. F.; Lutkenhaus, J. Nature 1991, 354, 161-164. https://doi.org/10.1038/354161a0
  8. Chen, Y.; Erickson, H. P. J. Biol. Chem. 2005, 280, 22549-22554. https://doi.org/10.1074/jbc.M500895200
  9. Popp, D.; Iwasa, M.; Erickson, H. P.; Narita, A.; Maeda, Y.; Robinson, R. C. J. Biol. Chem. 2010, 285, 11281-11289. https://doi.org/10.1074/jbc.M109.084079
  10. Anderson, D. E.; Kim, M. B.; Moore J. T.; O'Brien, T. E.; Sorto, N. A.; Grove, C. I.; Lackner, L. L.; Ames, J. B.; Shaw, J. T. ACS Chem. Biol. 2012, 7, 1918-1928. https://doi.org/10.1021/cb300340j
  11. Lappchen, T.; Pinas, V. A.; Hartog, A. F.; Koomen, G. J.; Schaffner-Barbero, C.; Andreu, J. M.; Trambaiolo, D.; Lowe, J.; Juhem, A.; Popov, A. V; den Blaauwen, T. Chem. Biol. 2008, 15, 189-199. https://doi.org/10.1016/j.chembiol.2007.12.013
  12. Foss, M. H.; Eun, Y. J.; Grove, C. I.; Pauw, D. A.; Sorto, N. A.; Rensvold, J. W.; Pagliarini, D. J.; Shaw, J. T.; Weibel, D. B. Med. Chem. Commun. 2013, 4, 112-119. https://doi.org/10.1039/C2MD20127E
  13. Gupta, K. K.; Bharne, S. S.; Rathinasamy, K.; Naik, N. R.; Panda, D. FEBS J. 2006, 273, 5320-5332. https://doi.org/10.1111/j.1742-4658.2006.05525.x
  14. Rai, D.; Singh, J. K.; Roy, N.; Panda, D. Biochem. J. 2008, 410, 147-155. https://doi.org/10.1042/BJ20070891
  15. Wang, J.; Galgoci, A.; Kodali, S.; Herath, K. B.; Jayasuriya, H.; Dorso, K.; Vicente, F.; Gonzalez, A.; Cully, D.; Bramhill, D.; Singh, S. J. Biol. Chem. 2003, 278, 44424-44428. https://doi.org/10.1074/jbc.M307625200
  16. Hsiao, C. J.; Hsiao, G.; Chen, W. L.; Wang, S. W.; Chiang, C. P.; Liu, L. Y.; Guh, J. H.; Lee, T. H.; Chung, C. L. J. Nat. Prod. 2014, 77, 758-765. https://doi.org/10.1021/np400517g
  17. Zhu, Z.; Sun, H.; Ma, G.; Wang, Z.; Li, E.; Liu, Y.; Liu, Y. Int. J. Mol. Sci. 2012, 13, 2025-2035. https://doi.org/10.3390/ijms13022025
  18. Kundu, S.; Kim, T. H.; Yoon, J. H.; Shin, H. S.; Lee, J.; Jung, J. H.; Kim, H. S. Int. J. Oncol. 2014, 45, 2331-2340. https://doi.org/10.3892/ijo.2014.2659
  19. Lowe, J.; Li, H.; Downing, K. H.; Nogales, E. J. Mol. Biol. 2001, 313, 1045-1057. https://doi.org/10.1006/jmbi.2001.5077
  20. Sun, L.; Simmerling, C.; Ojima, I. ChemMedChem 2009, 4, 719-731. https://doi.org/10.1002/cmdc.200900044

Cited by

  1. Raphanus sativus Sprout Causes Selective Cytotoxic Effect on p53-Deficient Human Lung Cancer Cells in vitro vol.12, pp.2, 2017, https://doi.org/10.1177/1934578x1701200224
  2. Cytotoxic Lactones from the Pericarps of Litsea japonica vol.25, pp.1, 2019, https://doi.org/10.20307/nps.2019.25.1.23
  3. A New Oleanane Triterpenoid from the Roots of Callerya speciosa vol.17, pp.5, 2015, https://doi.org/10.2174/1570178616666190806124038