DOI QR코드

DOI QR Code

대자율이방성(AMS) 분석을 통한 석재 결의 파악: 거창 화강석에서의 사례 연구

Determination of Rock Cleavages Using AMS (Anisotropy of Magnetic Susceptibility): a Case Study on the Geochang Granite Stone, Korea

  • 조형성 (부산대학교 지질환경과학과) ;
  • 김종선 (부산대학교 지질환경과학과) ;
  • 김건기 ((재)거창화강석 연구센터) ;
  • 강무환 ((재)거창화강석 연구센터) ;
  • 손영관 (경상대학교 지질과학과) ;
  • 이윤수 (한국지질자원연구원) ;
  • 좌용주 (경상대학교 지질과학과) ;
  • 손문 (부산대학교 지질환경과학과)
  • Cho, Hyeongseong (Department of Geological Sciences, Pusan National University) ;
  • Kim, Jong-Sun (Department of Geological Sciences, Pusan National University) ;
  • Kim, Kun-Ki (Geochang Granite Research Center) ;
  • Kang, Moo-Hwan (Geochang Granite Research Center) ;
  • Sohn, Young Kwan (Department of Geological Sciences, Gyeongsang National University) ;
  • Lee, Youn Soo (Korea Institute of Geoscience and Mineral Resources) ;
  • Jwa, Yong-Joo (Department of Geological Sciences, Gyeongsang National University) ;
  • Son, Moon (Department of Geological Sciences, Pusan National University)
  • 투고 : 2015.07.15
  • 심사 : 2015.08.26
  • 발행 : 2015.09.30

초록

화강암 석산에서는 '결'이라고 지칭되는 분리되기 용이한 면을 따라 채석이 이루어진다. 이러한 결의 방향성과 발달 특징은 채석의 효율성과 관련되므로 석산에서 채굴방향을 결정함에 있어 고려해야할 가장 중요한 요인이다. 이번 연구에서는 한반도 남부 거창지역에 분포하는 화강암 석산(JS기업, SD개발, AR석재, GD산업, BW무역, MD기업사)들을 대상으로 대자율이방성 방법을 적용하여 석재의 자기미세구조를 해석하였으며, 이로부터 석재 결과의 연관성 및 파악방법에 대해 논의하였다. 평균대자율 분석, 고온대자율 실험 그리고 자기이력곡선 분석 결과, 화강암 석재의 대자율이방성을 지배하는 주자성광물은 티탄함량이 적은 다자구 및 위단자구의 자철석으로 해석된다. 대자율이방성 측정 결과, 6개 석산 모두에서 체계적인 방향성의 자기엽리구조가 발달하며, 자기엽리구조는 대부분 거의 수직에 가까운 고각의 경사를 가진다. 자기엽리구조는 대부분 석산에서 석재의 2번 결과 매우 유사한 방향성을 보인다. 예외적으로 다른 석산에 비해 $P_J$ 값이 높아 미세구조의 발달이 현저한 BW무역에서의 자기엽리구조는 1번 결과 거의 평행하다. 이상의 결과들은 화강암 석재의 결은 광물결정들의 모양 및 배열상태, 즉 암석미세구조와 밀접하게 관련됨을 지시하고 있어, 대자율이방성을 이용한 자기미세구조 분석은 석재 결의 방향성을 측정하는 정량적이고 효과적인 하나의 방법이 될 수 있음을 알려준다.

In granite quarry, stones are generally quarried along easily separating planes called as 'rock cleavage'. Because orientation and characteristics of the rock cleavage are directly involved with easy quarrying, it is the most important factor on selecting a direction of digging. Using AMS (anisotropy of magnetic susceptibility), we attempt to interpret rock fabrics in Geochang Granite Stone (JS, SD, AR, GD, BW, MD quarry) and discuss about determination of rock cleavages and correlation between the rock fabrics and cleavages. Based on mean susceptibility, thermo-susceptibility curves, and hysteresis parameters, Ti-poor MD and/or PSD magnetites are the main contributor to AMS of the granite stones. The systematic magnetic foliations with sub-vertical dip angle are developed in the whole granite quarries. In most of the granite quarries, the magnetic foliations are significantly consistent with grain plane. In the BW quarry, which has higher $P_J$ values than the others, the magnetic foliations coincide exceptionally with rift plane. These results suggest that rock cleavages in granite stone are related to rock fabrics meaning shape and spatial arrangement of crystals. Magnetic fabrics analysis using AMS method, therefore, can be a quantitative and effective tool for determination of rock cleavages in granite quarry.

키워드

참고문헌

  1. Abbott, R.N., 1989, Internal structures in part of the South Mountain batholith, Nova Scotia, Canada. Geological Society of America Bulletin, 101, 1493-1506. https://doi.org/10.1130/0016-7606(1989)101<1493:ISIPOT>2.3.CO;2
  2. Balk, R., 1937, Structural behavior of igneous rocks. Geological Society of America Bulletin, 177p.
  3. Barreire, M., 1981, On curved laminae, graded layers, convection currents and dynamic crystal sorting in the Ploumanach (Brittany) subalkaline granite. Contributions to Mineralogy and Petrology, 77, 214-224. https://doi.org/10.1007/BF00373537
  4. Borradaile, G.J. and Henry, B., 1997, Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Science Reviews, 42, 49-93. https://doi.org/10.1016/S0012-8252(96)00044-X
  5. Borradaile, G.J., 1988, Magnetic susceptibility, petrofabric and strain - a review. Tectonophysics, 206, 203-218.
  6. Bouchez, J.L., 1997, Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: Bouchez, J.L., Hutton, D.H.W., Stephens, W.E. (eds.), Granite: From Segregation of Melt to Emplacement Fabrics. Kluwer Academic Publishers, Dordrecht. pp. 95-112.
  7. Butler, F.R., 1992, Paleomagnetism: Magnetic Domains the Geologic Terranes. Blackwell Scientific Publication. 319p.
  8. Chadima, M., Cajz, V. and Lagroix, F., 2009, On the interpretation of normal and invese fabric in dikes: Examples from the Eger Graben, NW Bohemian Massif. Tectonophysics, 466, 47-66. https://doi.org/10.1016/j.tecto.2008.09.005
  9. Cheong, C. and Kim, N., 2012, Review of radiometric ages for Phanerozoic granitoids in southern Korean Peninsula. The Journal of the Petrological Society of Korea, 21, 173-192. https://doi.org/10.7854/JPSK.2012.21.2.173
  10. Cho, H., 2014, Application of AMS (anisotropy of magnetic susceptibility) method to various geological settings. Ph.D. dissertation, Pusan National University, 503p.
  11. Cho, H., Kim, M.-C., Kim, H. and Son, M., 2014, Anisotropy of magnetic susceptibility (AMS) of the Quaternary faults, SE Korea: application to the determination of fault slip sense and paleo-stress field. The Journal of the Petrological Society of Korea, 23, 75-103. https://doi.org/10.7854/JPSK.2014.23.2.75
  12. Cho, H., Son, M. and Kim, I.-S., 2007, Anisotropy of magnetic susceptibility (AMS) of granitic rocks in the eastern region of the Yangsan Fault. Economic and Environmental Geology, 40, 171-189.
  13. Choi, J.B., Jwa, Y.J., Kim, K.-K. and Hwan, G.C., 2006, Analyses of mineral composition of Geochang granitic rocks for stone specification. Journal of the Mineralogical Society of Korea, 19, 363-381.
  14. Constable, C. and Tauxe, L., 1990, The bootstrap for magnetic susceptibility tensors. Journal of Geophysical Research, 95, 8383-8395. https://doi.org/10.1029/JB095iB06p08383
  15. Dale, T.N., 1923, The commercial granites of New England. USGS bulletin, 738, 488p.
  16. Day, R., Fuller, M.D. and Schmidt, V.A., 1977, Hysteresis properties of titanomagnetites: Grain size and composition dependence. Physics of the Earth and Planetary Interiors, 13, 260-267. https://doi.org/10.1016/0031-9201(77)90108-X
  17. De Boer, C.B. and Dekkers, M.J., 1996, Grain-size dependence of the rock magnetic properties for a natural maghemite. Geophysical Research Letters, 23, 2815-2818. https://doi.org/10.1029/96GL00781
  18. Douglass, P.M. and Voight, B., 1969, Anisotropy of granites: a Reflection of microscopic fabric. Gotechnique, 19, 376-398. https://doi.org/10.1680/geot.1969.19.3.376
  19. Dunlop, D.J. and Ozdemir, O., 1997, Rock magnetism: Fundamentals and Fontiers. Cambridge University Press, Cambridge, 573p.
  20. Dunlop, D.J., 1986, Hysteresis properties of magnetite and their dependence on particle size; a test of pseudo single domain remanance model. Journal of Geophysical Research, 23, 2815-2818.
  21. Ellwood, B.B. and Whitney, J.A., 1980, Magnetic fabric of the Elberton granite, northeast Georgia. Journal of Geophysical Research, 85, 1481-1486. https://doi.org/10.1029/JB085iB03p01481
  22. Fisher, R.A., 1953, Dispersion on a sphere. Proceedings of the Royal Society of London, 217, 295-305. https://doi.org/10.1098/rspa.1953.0064
  23. Gregoire, V., Darrozes, J., Gaillot, P., Nedelec, A. and Launeau, P., 1998, Magnetite grain shape fabric and distribution anisotropy vs rock magnetic fabric: a threedimensional case study. Journal of Structural Geology, 20, 937-944. https://doi.org/10.1016/S0191-8141(98)00022-4
  24. Han, M., Kim, S., Yang, K. and Kim, J.-S., 2010, Petrological study of the dioritic and granitic rocks from Geochang area. The Journal of the Petrological Society of Korea, 19, 167-180.
  25. Henry, B., Jordanova, D., Jordanova, N., Souque, C. and Robion, P., 2003, Anisotropy of magnetic susceptibility of heated rocks. Tectonophysics, 366, 241-258. https://doi.org/10.1016/S0040-1951(03)00099-4
  26. Hobbs, B.E., Means, W.D. and Williarms, P.F., 1976, An outline of structural geology. John Wiley & Sons, New York, 571p.
  27. Hrouda, F., 1982, Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 5, 37-82. https://doi.org/10.1007/BF01450244
  28. Hrouda, F., 1994, A technique for the measurement of thermal- changes of magnetic-susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophysical Journal International, 118, 604-612. https://doi.org/10.1111/j.1365-246X.1994.tb03987.x
  29. Hutton, D.H.W., 1982, A tectonic model for the emplacement of the Main Donegal Granite, Ireland. Journal of Geological Society of London, 139, 615-631. https://doi.org/10.1144/gsjgs.139.5.0615
  30. Hutton, D.H.W., 1988, Granite emplacement mechanisms and tectonic controls: inferences from deformation studies. Transactions of the Royal Society of Edinburgh: Earth Sciences, 79, 245-255. https://doi.org/10.1017/S0263593300014255
  31. Jahns, R.H., 1943, Sheet structure in granites: Its origin and use as a measure of glacial erosion in New England. The Journal of Geology, 51, 71-98. https://doi.org/10.1086/625130
  32. Jang, B.-A. and Oh, S.-H., 2001, Mechanical anisotropy dependent on the rock fabric in the Pocheon Granite and its relationship with microcracks. The Journal of Engineering Geology of Korea, 11, 191-203.
  33. Jelinek, V., 1978, Statistical processing of anisotropy magnetic susceptibility measured on groups of specimens. Studia Geophysica Geodaetica, 22, 50-62. https://doi.org/10.1007/BF01613632
  34. Jelinek, V., 1981, Characterization of the magnetic fabric of rocks. Tectonophysics, 79, 63-67. https://doi.org/10.1016/0040-1951(81)90110-4
  35. Jwa, Y.-J., Choi, J.B., Kim, K.-K., Kim, J.-S. and Hwang, G.C., 2007, Quality standard of the Geochang granite stone. The Journal of the Petrological Society of Korea, 16, 38-45.
  36. Kang, M.-H., 2010, A study on the relationship between the microcracks and compressive strength of the Geochang granites. Ph.M. dissertation, Gyeongsang National University, 57p.
  37. Kim, D.H., Hwang, J.H., Park, K.-H. and Song, K.Y., 1998, Geological report of the Busan sheet (1:250,000). Korea Institute of Energy and Resources, 62 p.
  38. Kim, J.-S., Kim, K.-K., Jwa, Y.-J. and Son, M., 2012, Cretaceous to early Tertiary granites and magma mixing in South Korea: Their spatio-temporal variations and tectonic implications (multiple slab window model). The Journal of the Petrological Society of Korea, 21, 203-216. https://doi.org/10.7854/JPSK.2012.21.2.203
  39. Kim, N.J. and Kim, J.H., 1970, Geological report of the Geochang sheet (1:50,000). Geological Survey of Korea, 29p.
  40. Kim, Y.J., Cho, D.L. and Park, Y.S., 1989, K-Ar ages and major mineral compositions of the Mesozoic igneous rocks in the vicinity of the Geochang area. Journal of the Korean Institute of Mining Geology, 22, 117-127.
  41. Martin-Hernandez, F., Luneburg, C.M., Aubourg, C. and Jackson, M., 2004, Magnetic Fabric: Method and Application. Geological Society of London, 551p.
  42. OSborne, F.F., 1935, Rift, grain, and hardway in some Precambrian granites, Quebec. Economic Geology, 30, 540-551. https://doi.org/10.2113/gsecongeo.30.5.540
  43. Owens, W.H. and Bamford, D., 1976, Magnetic, seismic, and other anisotropic properties of rock fabrics. Philosophical transactions of the Royal Society of London, 283, 55-68. https://doi.org/10.1098/rsta.1976.0069
  44. Park, D.W., 2007, Orientations of vertical rift and grain planes in Mesozoic granites, Korea. The Journal of the Petrological Society of Korea, 16, 12-26.
  45. Park, D.W., 2011, Characteristics of the rock cleavage in Jurassic granite, Hapcheon. The Journal of the Petrological Society of Korea, 20, 219-230. https://doi.org/10.7854/JPSK.2011.20.4.219
  46. Park, D.W., Kim, H.C., Lee, C.B., Hong, S.S., Chang, S.W. and Lee, C.W., 2004, Characteristics of the rock cleavage in Jurassic granite, Pocheon. The Journal of the Petrological Society of Korea, 13, 133-141.
  47. Park, J.K., Tanczyk, E.I. and Desbarats, A., 1988, Magnetic fabric and its significance in the 1400 Ma mealy Diabase Dykes of Labrador, Canada. Journal of Geophysical research, 93, 13689-13704. https://doi.org/10.1029/JB093iB11p13689
  48. Park, K.-H., Lee, H.-S., Song, Y.-S. and Cheong, C.-S., 2006, Sphene U-Pb ages of the granite-granodiorites from Hamyang, Geochang and Yeongju areas of the Yeongnam Massif. The Journal of the Petrological Society of Korea, 15, 39-48.
  49. Passchier, C.W. and Trouw, R.A.J., 2005, Microtectonics (2nd Ed.). Springer, 366p.
  50. Paterson, S.R., Fowler, T.K., Schmidt, K.L., Yoshinobu, A.S., Yuan, E.S. and Miller, R.B., 1998, Interpreting magmatic fabric patterns in plutons. Lithos, 44, 53-82. https://doi.org/10.1016/S0024-4937(98)00022-X
  51. Paterson, S.R., Vernon, R.H. and Tobisch, O.T., 1989, A review of criteria for the identification of magmatic and tectonic foliations in granitoids. Journal of Structural Geology, 11, 349-363. https://doi.org/10.1016/0191-8141(89)90074-6
  52. Peng, S. and Johnson, A.M., 1972, Crack growth and faulting in cylindrical specimens of chelmsford granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 9, 37-42. https://doi.org/10.1016/0148-9062(72)90050-2
  53. Philpotts, A.R. and Asher, P.M., 1994, Magmatic flow-direction indicators in a giant diabase feeder dike, Connecticut. Geology, 22, 363-366. https://doi.org/10.1130/0091-7613(1994)022<0363:MFDIIA>2.3.CO;2
  54. Raposo, M.I.B., Chaves, A.O., Lojkasek-Lima, P., D'Agrella-Filho, M.S. and Teixeira, W., 2004, Magnetic fabrics and rock magnetism of Proterozoic dike swarm from the southern Sao Francisco Craton, Minas Gerais State, Brazil. Tectonophysics, 378, 43-63. https://doi.org/10.1016/j.tecto.2003.10.017
  55. Raposo, M.I.B., D'Agrella-Filho, M.S. and Pinese, J.P.P., 2007, Magnetic fabrics and rock magnetism of Archaean and Proterozoic dike swarms in the southern Sao Francisco Craton, Brazil. Tectonophysics, 443, 53-71. https://doi.org/10.1016/j.tecto.2007.08.001
  56. Rochette, P., 1988, Inverse magnetic fabric in carbonate bearing rocks. Earth and Planetary Science Letters, 90, 229-237. https://doi.org/10.1016/0012-821X(88)90103-3
  57. Rochette, P., Aubourg, C. and Perrin, M., 1999, Is this magnetic fabric normal? A review and case studies in volcanic formation. Tectonophysics, 307, 219-234. https://doi.org/10.1016/S0040-1951(99)00127-4
  58. Rochette, P., Jackson M. and Aubourg, C., 1992, Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Review of Geophysics, 30, 209-226. https://doi.org/10.1029/92RG00733
  59. Tarling, D.H. and Hrouda, F., 1993, The Magnetic Anisotropy of Rocks. Chapman and Hall, London, 227p.
  60. Tauxe, L., 2002, Paleomagnetic Principles and Practice. Springer, New York, 299p.
  61. Tobisch, O.T. and Cruden, A.R., 1995, Fracture-controlled magma conduits in an obliquely convergent continental magmatic arc. Geology, 23, 941-944. https://doi.org/10.1130/0091-7613(1995)023<0941:FCMCIA>2.3.CO;2
  62. Vigneresse, J.L., 1990, Use and misuse of geophysical data to determine the shape at depth of granitic intrusions. Geological Journal, 25, 249-260. https://doi.org/10.1002/gj.3350250308

피인용 문헌

  1. Editorial : 2015, Applied petrology: Dimension stone, Aggregate, Stone cultural heritage vol.24, pp.3, 2015, https://doi.org/10.7854/JPSK.2015.24.3.149