DOI QR코드

DOI QR Code

Effect of Localized Recrystallization Distribution on Edgebond and Underfilm Applied Wafer-level Chip-scale Package Thermal Cycling Performance

  • Lee, Tae-Kyu (Component Quality and Technology Group, Cisco Systems, Inc.)
  • Received : 2015.03.01
  • Accepted : 2015.03.25
  • Published : 2015.03.30

Abstract

The correlation between crack propagation and localized recrystallization are compared in a series of cross section analyses on thermal cycled edgebond and underfilm material applied wafer level chip scale package (WLCSP) components with a baseline of no-material applied WLCSP components. The results show that the crack propagation distribution and recrystallization region correlation can explain potential degradation mechanisms and support the damage accumulation history in a more efficient way. Edgebond material applied components show a shift of damage accumulation to a more localized region, thus potentially accelerated the degradation during thermal cycling. Underfilm material applied components triggered more solder joints for a more wider distribution of damage accumulation resulting in a slightly improved thermal cycling performance compared to no-material applied components. Using an analysis on localized distribution of recrystallized areas inside the solder joint showed potential value as a new analytical approach.

Keywords

References

  1. T. K. Lee, T. Bieler, C. U. Kim and H. Ma, "Fundamental of solder and interconnect technology", Springer, Chapter, 5, 132 (2014).
  2. J. W. Yoon, J. H. Bang, Y. H. Ko, S. H. Yoo, J. K. Kim and C. W. Lee, "Power Module Packaging Technology with Extended Reliability for Electric Vehicle Applications", J. Microelectron. Packag. Soc., 21(4), 1 (2014). https://doi.org/10.6117/kmeps.2014.21.4.001
  3. T. K. Lee, B. Zhou and T. R. Bieler, "Impact of Isothermal Aging and Sn Grain Orientation on the Long-Term Reliability of Wafer-Level Chip-Scale Package Sn-Ag-Cu Solder Interconnects", IEEE Transactions on Components and Packaging Technologies (CPMT), 2(3), 496 (2012).
  4. T. K. Lee, B.e Zhou, L. Blair, K. C. Liu and T. R. Bieler, "Sn-Ag-Cu solder joint microstructure and orientation evolution as a function of position and thermal cycles in ball grid arrays using Orientation Imaging Microscopy", Journal of Electronic Materials, 39(12), 2588 (2010). https://doi.org/10.1007/s11664-010-1348-4
  5. T. K. Lee, K. C. Liu and T. R. Bieler, "Microstructure and orientation evolution of the Sn phase as a function of position in ball grid arrays in Sn-Ag-Cu solder joints", Journal of Electronic Materials, 38(12), 2685 (2009). https://doi.org/10.1007/s11664-009-0873-5
  6. B. Zhou, T. R. Bieler, G. Wu, S. Zaefferer, T. K. Lee and K. C. Liu, "In-Situ Synchrotron Characterization of Melting, Dissolution and Resolidification in Lead-Free Solders", Journal of Electronic Materials, 41(2), 262 (2012). https://doi.org/10.1007/s11664-011-1785-8
  7. S. Terashima, T. Kohno, A. Mizusawa, K. Arai, O. Okada, T. Wakabayashi, M. Tanaka and K. Tatsumi, "Improvement of Thermal Fatigue Properties of Sn-Ag-Cu Lead-Free Solder Interconnects on Casio's Wafer-Level Packages Based on Morphology and Grain Boundary Character", Journal of Electronic Materials, 38(1), 33 (2009). https://doi.org/10.1007/s11664-008-0560-y
  8. J. Li, T. T. Mattila and J. K. Kivilahti, "Multiscale Simulation of Microstructural Changes in Solder Interconnections During Thermal Cycling", Journal of Electronic Materials, 39(1), 77 (2010). https://doi.org/10.1007/s11664-009-0957-2
  9. T. T. Mattila and J. K. Kivilahti, "The Role of Recrystallization in the Failure of SnAgCu Solder Interconnections Under Thermomechanical Loading", IEEE Transactions on Component and Packaging Technologies, 33(3), 629 (2010). https://doi.org/10.1109/TCAPT.2010.2051268
  10. S. H. Kim, J. M. Kim, S. H. Yoo and Y. B. Park, "Effects of PCB Surface Finishes on Mechanical Reliability of Sn-1.2Ag-0.7Cu-0.4In Pb-free Solder Joint", J. Microelectron. Packag. Soc., 19(4), 57 (2012). https://doi.org/10.6117/kmeps.2012.19.4.057
  11. JEDEC Standard, JESD22-A104D, Thermal cycling, March 2009, http://www.jedec.org/standards-documents