DOI QR코드

DOI QR Code

Differential Effects of Methoxylated p-Coumaric Acids on Melanoma in B16/F10 Cells

  • Yoon, Hoon Seok (Cosmetic Sciences Center, Jeju National University) ;
  • Lee, Nam-Ho (Cosmetic Sciences Center, Jeju National University) ;
  • Hyun, Chang-Gu (Cosmetic Sciences Center, Jeju National University) ;
  • Shin, Dong-Bum (Department of Food Science and Nutrition, Jeju National University)
  • Received : 2014.11.18
  • Accepted : 2014.12.29
  • Published : 2015.03.31

Abstract

As an approach to search for chemopreventive agents, we tested p-coumaric acid, 3-methoxy-p-coumaric acid (ferulic acid), and 3,5-dimethoxy-p-coumaric acid (sinapic acid) in B16/F10 melanoma cells. Intracellular melanin contents were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and cytotoxicity of the compounds were examined by lactate dehydrogenase (LDH) release. p-Coumaric acid showed inhibitory effect on melanogenesis, but ferulic acid increased melanin content, and sinapic acid had almost no effect on melanogenesis. Treatment with ferulic acid resulted in a 2 to 3 fold elevation in the production of melanin. Correlatively, cell viability decreased in a dose-dependent manner when treated with ferulic acid. However, ferulic acid did not affect the LDH release from the cells. Treatment with sinapic acid resulted in a 50~60% elevation in the release of LDH when treated with a $200{\mu}g/mL$ concentration and showed neither cytostasis nor increase of melanin synthesis in a dose-dependent manner. Taken together, p-coumaric acid inhibits melanogenesis, ferulic acid induces melanogenesis, and sinapic acid exerts cytotoxic effects in B16/F10 murine melanoma cells. The results indicate that the addition of methoxy groups to p-coumaric acid shows the melanogenic or cytotoxic effects in melanoma cells compared to the original compound. Therefore, this study suggests the possibility that methoxylated p-coumaric acid, ferulic acid can be used as a chemopreventive agent.

Keywords

References

  1. Chin L, Garraway LA, Fisher DE. 2006. Malignant melanoma: Genetics and therapeutics in the genomic era. Genes Dev 20: 2149-2182. https://doi.org/10.1101/gad.1437206
  2. Yoon HS, Kim IJ. 2011. Nobiletin induces differentiation of murine B16/F10 melanoma cells. J Korean Soc Appl Biol Chem 54: 353-361. https://doi.org/10.3839/jksabc.2011.056
  3. Fisher PB, Grant S. 1985. Effects of interferon on differentiation of normal and tumor cells. Pharmacol Ther 27: 143-166. https://doi.org/10.1016/0163-7258(85)90067-1
  4. Jimenez M, Kameyama K, Maloy WL, Tomita Y, Hearing VJ. 1988. Mammalian tyrosinase: Biosynthesis, processing, and modulation by melanocyte-stimulating hormone. Proc Natl Acad Sci USA 85: 3830-3834. https://doi.org/10.1073/pnas.85.11.3830
  5. Videria IFS, Moura DFL, Magina S. 2013. Mechanisms regulating melanogenesis. An Bras Dermatol 88: 76-83. https://doi.org/10.1590/S0365-05962013000100009
  6. Walle T. 2007. Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass? Semin Cancer Biol 17: 354-362. https://doi.org/10.1016/j.semcancer.2007.05.002
  7. Yoon HS, Lee SR, Ko HC, Choi SY, Park JG, Kim JK, Kim SJ. 2007. Involvement of extracellular signal-regulated kinase in nobiletin-induced melanogenesis in murine B16/F10 melanoma cells. Biosci Biotechnol Biochem 71: 1781-1784. https://doi.org/10.1271/bbb.70088
  8. Young SW, Dickens M, Tavare JM. 1994. Differentiation of PC12 cells in response to cAMP analogue is accompanied by sustained activation of mitogen-activated protein kinase. Comparison with the effects of insulin, growth factors and phorbol esters. FEBS Lett 338: 212-216. https://doi.org/10.1016/0014-5793(94)80367-6
  9. Lam IK, Alex D, Wang YH, Liu P, Liu AL, Du GH, Lee SMY. 2012. In vitro and in vivo structure and activity relationship analysis of polymethoxylated flavonoids: Identifying sinensetin as a novel antiangiogenesis agent. Mol Nutr Food Res 56: 945-956. https://doi.org/10.1002/mnfr.201100680
  10. Laavola M, Nieminen R, Yam MF, Sadikun A, Asmawi MZ, Basir R, Welling J, Vapaatalo H, Korhonen R, Moilanen E. 2012. Flavonoids eupatorin and sinensetin present in Orthosiphon staminus leaves inhibit inflammatory gene expression and STAT1 activation. Planta Med 78: 779-786. https://doi.org/10.1055/s-0031-1298458
  11. Van Slambrouck S, Parmar VS, Sharma SK, De Bondt B, Fore F, Coopman P, Vanhoecke BW, Boterberg T, Depypere HT, Lecleroq G, Bracke ME. 2005. Tangeretin inhibits extracellular signal-regulated kinase (ERK) phosphorylation. FEBS Lett 579: 1665-1669. https://doi.org/10.1016/j.febslet.2004.10.114
  12. Kumagai A, Horike N, Satoh Y, Uebi T, Sasaki T, Itoh Y, Hirata Y, Uchio-Yamada K, Kitagawa K, Uesato S, Kawahara H, Takemori H, Nagaoka Y. 2011. A potent inhibitor of SIK2, 3, 3', 7-trihydroxy-4'-methoxyflavon (4'-O-methylfisetin), promotes melanogenesis in B16F10 melanoma cells. PLOS ONE 6: e26148. https://doi.org/10.1371/journal.pone.0026148
  13. Yang JY, Koo JH, Song YG, Kwon KB, Lee JH, Sohn HS, Park BH, Jhee EC, Park JW. 2006. Stimulation of melanogenesis by scoparone in B16 melanoma cells. Acta Pharmacol Sin 27: 1467-1473. https://doi.org/10.1111/j.1745-7254.2006.00435.x
  14. Alesiani D, Cicconi R, Mattei M, Bei R, Canini A. 2009. Inhibition of MEK1/2 kinase activity and stimulation of melanogenesis by 5,7-dimethoxycoumarin treatment of melanoma cells. Int J Oncol 34: 1727-1735.
  15. Nagata H, Takekoshi S, Takeyama R, Homma T, Yoshiyuki Osamura R. 2004. Quercetin enhances melanogenesis by increasing activity and synthesis of tyrosinase in normal human melanocytes. Pigment Cell Res 17: 66-73. https://doi.org/10.1046/j.1600-0749.2003.00113.x
  16. Ohguchi K, Akao Y, Nozawa Y. 2006. Stimulation of melanogenesis by the citrus flavonoid naringenin in mouse B16 melanoma cells. Biosci Biotechnol Biochem 70: 1499-1501. https://doi.org/10.1271/bbb.50635
  17. Chen X, Zhang B, Yuan X, Yang F, Lin J, Zhan H, Lin L, Wang Y, Wang Z, Zheng Q. 2012. Isoliquiritigenin-induced differentiation in mouse melanoma B16F0 cell line. Oxid Med Cell Longev 2012: 534934.
  18. Lee JS, Jung KS, Kim YS, Park D. 2007. Diosgenin inhibits melanogenesis through the activation of phosphatidylinositol-3-kinase pathway (PI3K) signaling. Life Sci 81: 249-254. https://doi.org/10.1016/j.lfs.2007.05.009
  19. Funasaka Y, Chakraborty AK, Komoto M, Ohashi A, Ichihashi M. 1999. The depigmenting effect of ${\alpha}$-tocopheryl ferulate on human melanoma cells. Br J Dermatol 141: 20-29. https://doi.org/10.1046/j.1365-2133.1999.02916.x
  20. Lee J, Jung E, Lee J, Huh S, Boo YC, Hyun CG, Kim YS, Park D. 2007. Mechanisms of melanogenesis inhibition by 2,5-dimethyl-4-hydroxy-3(2H)-furanone. Br J Dermatol 157: 242-248. https://doi.org/10.1111/j.1365-2133.2007.07934.x
  21. Lee JS, Kim YS, Park DH. 2007. Rosemarinic acid induces melanogenesis through protein kinase A activation signaling. Biochem Pharmacol 74: 960-968. https://doi.org/10.1016/j.bcp.2007.06.007
  22. An SM, Lee SJ, Choi SW, Moon SW, Boo YC. 2008. p-Coumaric acid, a constituent of Sasa quelpaertensis Nakai, inhibits cellular melanogenesis stimulated by ${\alpha}$-melanocyte stimulating hormone. Br J Dermatol 159: 292-299. https://doi.org/10.1111/j.1365-2133.2008.08653.x
  23. Zare K, Eidi A, Roghami M, Rohani AH. 2014. The neuroprotective potential of sinapic acid in the 6-hydroxydopamine-induced hemi-parkinsonian rat. Metab Brain Dis 30: 201-213.
  24. Dong Y, Cao A, Shi J, Yin P, Wang L, Ji G, Xie J, Wu D. 2014. Tangeretin, a citrus polymethoxyflavonoid, induces apoptosis of human gastric cancer AGS cells through extrinsic and intrinsic signaling pathways. Oncol Rep 31: 1788-1794. https://doi.org/10.3892/or.2014.3034

Cited by

  1. Comparative Depigmentation Effects of Resveratrol and Its Two Methyl Analogues in α-Melanocyte Stimulating Hormone-Triggered B16/F10 Murine Melanoma Cells vol.21, pp.2, 2016, https://doi.org/10.3746/pnf.2016.21.2.155
  2. Young leaves of reed ( Phragmites communis ) suppress melanogenesis and oxidative stress in B16F10 melanoma cells vol.93, 2017, https://doi.org/10.1016/j.biopha.2017.06.037
  3. Pratol, an O-Methylated Flavone, Induces Melanogenesis in B16F10 Melanoma Cells via p-p38 and p-JNK Upregulation vol.22, pp.10, 2017, https://doi.org/10.3390/molecules22101704
  4. Biochemical Characterization of Ferulic Acid and Caffeic Acid Which Effectively Inhibit Melanin Synthesis via Different Mechanisms in B16 Melanoma Cells vol.41, pp.5, 2018, https://doi.org/10.1248/bpb.b17-00892
  5. De Novo Biosynthesis of p -Coumaric Acid in E. coli with a trans -Cinnamic Acid 4-Hydroxylase from the Amaryllidaceae Plant Lycoris aurea vol.23, pp.12, 2018, https://doi.org/10.3390/molecules23123185
  6. p-Coumaric Acid as An Active Ingredient in Cosmetics: A Review Focusing on its Antimelanogenic Effects vol.8, pp.8, 2019, https://doi.org/10.3390/antiox8080275
  7. Calebin-A, a Curcuminoid Analog Inhibits α-MSH-Induced Melanogenesis in B16F10 Mouse Melanoma Cells vol.6, pp.3, 2019, https://doi.org/10.3390/cosmetics6030051
  8. Organogold drug Auranofin exhibits anti-melanogenic activity in B16F10 and MNT-1 melanoma cells vol.312, pp.3, 2015, https://doi.org/10.1007/s00403-019-01974-1
  9. Development of a Novel Electrochemical Biosensor Based on Carbon Nanofibers-Cobalt Phthalocyanine-Laccase for the Detection of p-Coumaric Acid in Phytoproducts vol.22, pp.17, 2015, https://doi.org/10.3390/ijms22179302