DOI QR코드

DOI QR Code

Synthesis of Optically Active Monoesters via Kinetic Resolution by Chiral Co (Salen) Complex Immobilized on Mesoporous BEA

메조세공 BEA에 고정화된 키랄 Co살렌 착체의 동적분할을 통한 고광학순도의 키랄 모노에스테르 합성

  • Received : 2014.08.06
  • Accepted : 2014.10.30
  • Published : 2015.04.10

Abstract

BEA-zeolite was modified by alkaline solution to introduce mesoporosity in the crystals and the homogeneous chiral Co(III) salen was immobilized in the mesopores. The dinuclear chiral Co(salen)-$GaCl_3$ catalyst immobilized on mesoporous BEA-zeolite showed high activity for the regioselective ring opening of terminal epoxides by carboxylic acids. Various chiral monoester derivatives could be synthesized with moderate enantioselectivity (47~69 ee%) from racemic epoxides through above reaction. When the chiral (S)-ECH was used as a reactant, it was efficiently resolved by carboxylic acid with a high enantioselectivity in the presence of heterogenized chiral salen catalyst, and the ring opened product afforded optically pure monoester epoxide (R)-GB (up to 98 ee%) through the ring closing in the basic solution by elimination of HCl. The heterogeneous catalyst could be fabricated easily, and the catalytic activity was retained for several times reuse without any further regeneration step.

BEA형 제올라이트를 알칼리용액으로 처리하여 결정구조 내에 메조세공이 형성되도록 제조하고, 세공 내에 균일계 키랄 Co(III) 살렌을 고정화시켰다. 메조세공 BEA-제올라이트에 고정화된 이핵형 Co-$GaCl_3$ 살렌 촉매는 말단 에폭사이드의 산소고리를 카르복실산으로 여는 키랄 반응에 대하여 높은 활성을 나타내었다. 이 반응을 통하여 라세믹 에폭사이드로부터 다양한 모노 에스테르 유도체를 중간 정도의 광학선택도(47~69 ee%)로 합성할 수 있었다. 키랄(S)-ECH를 반응물로 사용하면, 이들은 키랄 살렌 촉매 존재하에서 카르복시 산에 의하여 에폭사이드의 링이 광학선택적으로 열리며, 생성된 화합물을 염기용액에서 탈염산 처리하면 다시 에폭사이드 링이 형성되면서 광학순도가 매우 높은 모노에스터 에폭사이드 (R)-GB (98 ee% 이상)가 얻어졌다. 고정화촉매는 매우 용이하게 제조될 수 있었으며, 특별한 재생처리 없이 여러번 재사용하여도 촉매의 활성이 유지되었다.

Keywords

References

  1. H. Yang, J. Li, J. Yang, Z. Liu, Q. Yang, and C. Li, Asymmetric reactions on chiral catalysts entrapped within a mesoporous cage, Chem. Comm., 1086-1088 (2007).
  2. R. M. Hanson, The synthetic methodology of nonracemic glycidol and related 2,3-epoxy alcohols, Chem. Rev., 91, 437-475 (1991). https://doi.org/10.1021/cr00004a001
  3. M. Tokunaga, J. F. Larrow, F. Kakiuchi, and E. N. Jacobsen, Asymmetric Catalysis with Water: Efficient Kinetic Resolution of Terminal Epoxides by Means of Catalytic Hydrolysis, Science, 277, 936-938 (1997). https://doi.org/10.1126/science.277.5328.936
  4. L. P. C. Nielson, C. P. Stevenson, D. G. Backmond, and E. N. Jacobsen, Mechanistic investigation leads to a synthetic improvement in the hydrolytic kinetic resolution of terminal epoxides, J. Am. Chem. Soc., 126, 1360-1362 (2004). https://doi.org/10.1021/ja038590z
  5. G.-J. Kim and J.-H. Shin, Application of new unsymmetrical chiral Mn(III), Co(II,III) and Ti(IV) salen complexes in enantioselective catalytic reactions, Catal. Lett., 63, 83-90 (1999). https://doi.org/10.1023/A:1019040215323
  6. M. E. Furrow, S. E. Schaus, and E. N. Jacobsen, Practical access to highly enantioenriched C-3 building blocks via hydrolytic kinetic resolution, J. Org. Chem., 63, 6776-6777 (1998). https://doi.org/10.1021/jo981332d
  7. E. N. Jacobsen, F. Kakiuchi, R. G. Konsler, J. F. Larrow, and M. Tokunaga, Enantioselective catalytic ring opening of epoxides with carboxylic acids, Tetrahedron Lett., 38, 773-776 (1997). https://doi.org/10.1016/S0040-4039(96)02414-8
  8. R. B. Kawthekar, C. H. Ahn, and G. J. Kim, Kinetic resolution of terminal epoxides with phenols promoted by heterometallic Co-Al and Co-Ga salen complexes, Catal. Lett., 115, 62-69 (2007). https://doi.org/10.1007/s10562-007-9074-0
  9. K. Soai, M. Watanabe, and A. Yamamoto, Enantioselective addition of dialkylzincs to aldehydes using heterogeneous chiral catalysts immobilized on alumina and silica gel, J. Org. Chem., 55, 4832-4835 (1990). https://doi.org/10.1021/jo00303a014
  10. S. W. Kim, S. J. Bae, T. Hyeon, and B. M. Kim, Chiral proline- derivative anchored on mesoporous silicas and their application to the asymmetric diethylzinc addition to benzaldehyde, Mircro. Meso. Mat., 44, 523-529 (2001).
  11. R. G. Konsler, J. Karl, and E. N. Jacobsen, Cooperative asymmetric catalysis with dimeric salen complexes, J. Am. Chem. Soc., 120, 10780-10781 (1998). https://doi.org/10.1021/ja982683c
  12. R. Breinbauer and E. N. Jacobsen, Cooperative asymmetric catalysis with dendrimeric [Co(salen)] complexes, Angew. Chem. Int. Ed., 39, 3604-3607 (2000). https://doi.org/10.1002/1521-3773(20001016)39:20<3604::AID-ANIE3604>3.0.CO;2-9
  13. M. Kwon and G.-J. Kim, Synthesis of polymeric salen complexes and application in the enantioselective hydrolytic kinetic resolution of epoxides as catalysts, Catal. Today, 87, 145-151 (2003). https://doi.org/10.1016/j.cattod.2003.09.008
  14. D. A. Annis and E. N. Jacobson, Polymer-supported chiral salen complexes: Synthetic applications and mechanistic investigation in the hydrolytic kinetic resolution of terminal epoxides, J. Am. Chem. Soc., 121, 4147-4154 (1999). https://doi.org/10.1021/ja984410n
  15. J. H. Shin and G.-J. Kim, The catalytic activity of new chiral salen complexes immobilized on MCM-41 by multi-step grafting in the asymmetric epoxidation, Tetrahedron Lett., 40, 6827-6830 (1999). https://doi.org/10.1016/S0040-4039(99)01407-0
  16. D. Pini, A. Mandoli, S. Orlandi, and P. Salvadori, First example of a silica gel-supported optically active Mn(III)-salen complex as a heterogeneous asymmetric catalyst in the epoxidation of olefins, Tetrahedron: Asymmetry, 10, 3883-3886 (1999). https://doi.org/10.1016/S0957-4166(99)00426-7
  17. S. Peukert and E. N. Jacobsen, Enantioselective parallel synthesis using polymer-supported chiral Co(salen) complexes, Org. Lett., 1, 1245-1248 (1999). https://doi.org/10.1021/ol990920q
  18. F. Minutolo, D. Pini, and P. Salvadori, Polymer-bound chiral (salen)Mn(III) complex as heterogeneous catalyst in rapid and clean enantioselective epoxidation of unfunctionalised olefins, Tetrahedron Lett., 37, 3375-3378 (1996). https://doi.org/10.1016/0040-4039(96)00550-3
  19. L. Drozdova, J. Novakova, G. Schulz-Ekloff, and N. I. Jaeger, Ship-in-bottle synthesis of palladium carbonyl complexes in NaY and NaX zeolites via the direct carbonylation of $Pd(NH_{3})_{4}^{2+}$, Mircro. Meso. Mat., 28, 395-403 (1999). https://doi.org/10.1016/S1387-1811(98)00310-2
  20. C. Schuster and W. F. Holderich, Modification of faujasites to generate novel hosts for "ship-in-a-bottle" complexes, Catal. Today, 60, 193-207 (2000). https://doi.org/10.1016/S0920-5861(00)00336-9
  21. S. B. Ogunwumi and T. Bein, Intrazeolite assembly of a chiral manganese salen epoxidation catalyst, Chem. Commun., 901-902 (1997).
  22. J. C. Groen, T. Sano, J. A. Moulijn, and J. Perez-Ramirez, Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions, J. of Catal., 251, 21-27 (2007). https://doi.org/10.1016/j.jcat.2007.07.020
  23. S. S. Thakur, W. Li, S. J. Kim, and G.-J. Kim, Highly reactive and enantioselective kinetic resolution of terminal epoxides with $H_{2}O$ and HCl catalyzed by new chiral (salen)Co complex linked with Al, Tetrahedron Lett., 46, 2263-2266 (2005). https://doi.org/10.1016/j.tetlet.2005.02.012