DOI QR코드

DOI QR Code

Analysis of Biomass Energy Potential around Major Cities in South Korea

국내 주요도시 주변의 바이오매스 에너지 잠재량 분석

  • Kook, Jin Woo (Department of Resources and Energy Engineering, Chonbuk National University) ;
  • Lee, See Hoon (Department of Resources and Energy Engineering, Chonbuk National University)
  • 국진우 (전북대학교 자원에너지공학과) ;
  • 이시훈 (전북대학교 자원에너지공학과)
  • Received : 2015.01.16
  • Accepted : 2015.02.14
  • Published : 2015.04.10

Abstract

Biomass is recognized as one of important renewable energy sources because it can be converted and used as solid, gaseous and liquid forms. Also, biomass is one of promising ways to solve the depletion of fossil fuels and global warming problems. The information about local biomass energy potentials and space energy densities can be powerfully utilized to determine the scale of biomass energy conversion plant and to analyze economic effects. The latest data on domestic biomass resources, such as agricultural, forestry, livestock and urban wastes, were collected from various government organizations and institutes and were analyzed to calculate biomass energy potential and space energy density. As local areas in South Korea to collect biomass resources increased, energy potentials increased, but space energy densities of total biomass decreased.

바이오매스 자원은 고체, 액체, 기체 등의 다양한 형태의 에너지 자원으로 전환되어 이용될 수 있기 때문에 필수적인 재생에너지 자원으로 여겨지고 있다. 더불어 바이오매스는 화석 연료의 고갈과 지구 온난화를 해결할 수 있는 방법으로도 각광을 받고 있다. 바이오매스 에너지 전환 플랜트의 규모를 결정하고 경제성을 분석하기 위해서는 지역 내의 바이오매스 에너지 잠재량과 에너지 밀도에 대한 정보가 유용하게 이용될 수 있다. 농업 폐기물, 임업 폐기물, 축산 폐기물, 도시생활 폐기물 등의 국내 에너지 잠재량과 에너지 밀도를 정부 및 연구 기관들이 발표한 최신 자료를 수집하여 분석되었다. 바이오매스 자원을 확보하기 위한 지역이 증가할수록 에너지 잠재량은 증가하나 에너지 밀도는 감소하는 것으로 나타났다.

Keywords

References

  1. B. Mustafa and A. Gunhan, Biomass Energy in the world Use of Biomass and Potential Trends, Int. J. Taylor & Francis, 27, 931-940 (2005).
  2. R. Van den Broek, Sustainability of biomass electricity systems-an assessment of costs, macro-economic and environmental impacts in Nicaragua, Ireland and the Netherlands., Utrecht University (2000).
  3. W. C. Turkenburg, Renewable energy technologies, in World Energy Assessment., Washington DC: UNDP (2000).
  4. C. Wereko-Broddy and E. B. Hagen, Biomass conversion and technology., England: Wiley (1996).
  5. J. L. Easterly and M. Burnham, Overview of biomass and waste fuel resources for power production, Int. J. Biomass and Bioenergy, 11, 72-92 (1996).
  6. G. Grassi and A. V. Bridgwater, The opportunities for electricity production from biomass by advanced thermal conversion technologies, Int. J. Biomass and Bioenergy, 4, 339-345 (1993). https://doi.org/10.1016/0961-9534(93)90050-E
  7. R. I. Graham, W. Liu, M. Downing, C. E. Noon, M. Daly, and A. Moore, The effect of location and facility demand on the marginal cost of delivered wood chips from energy crops: a case study of the state of Tennessee, Int. J. Biomass and Bioenergy, 13, 117-123 (1997). https://doi.org/10.1016/S0961-9534(97)00022-6
  8. R. Venendaal, U. Jorgensen, and C. Foster, European energy crops : a synthesis, Int. J. Biomass and Bioenergy, 13, 147-185 (1997). https://doi.org/10.1016/S0961-9534(97)00029-9
  9. Korea Forest Service, Annual report of forestry products (2010).
  10. KOSTAT, Annual report of Agricultural byproducts (2010).
  11. KOSTAT, Agricultural research report (2010).
  12. KOSTAT, Annual report of Liverstock (2010).
  13. KIER, New & Renewable Energy Data Center, http://www.energy.or.kr.

Cited by

  1. Techno-economic Evaluation of an Ethanol Production Process for Biomass Waste vol.27, pp.2, 2016, https://doi.org/10.14478/ace.2016.1007
  2. Feasibility study and benefit analysis of biomass-derived energy production strategies with a MILP (mixed-integer linear programming) model: Application to Jeju Island, Korea vol.34, pp.6, 2017, https://doi.org/10.1007/s11814-017-0052-y
  3. The Role of Renewable Energy in the Promotion of Circular Urban Metabolism vol.9, pp.12, 2017, https://doi.org/10.3390/su9122341
  4. A Methodology to Estimate the Potential Production of Bioenergy Based on the Species, Cultivation Area Conditions, and Period of Forest Trees vol.43, pp.5, 2015, https://doi.org/10.4491/ksee.2021.43.5.377