DOI QR코드

DOI QR Code

Removal of Organic Matter and Pharmaceuticals in Wastewater Effluent through Managed Aquifer Recharge

하수처리수를 이용한 대수층 함양관리 기술(Managed Aquifer Recharge)에서 유기물과 의약화합물 제거

  • Im, Huncheol (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Yeo, Inseol (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Maeng, Sung-Kyu (School of Civil and Environmental Engineering, Sejong University) ;
  • Choi, Heechul (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology)
  • 임훈철 (광주과학기술원 환경공학부) ;
  • 여인설 (광주과학기술원 환경공학부) ;
  • 맹승규 (세종대학교 건설환경공학과) ;
  • 최희철 (광주과학기술원 환경공학부)
  • Received : 2015.02.12
  • Accepted : 2015.03.31
  • Published : 2015.03.31

Abstract

This study was conducted to evaluate the removal efficiencies of organic matter and pharmaceuticals and to identify the removal mechanism of pharmaceuticals using sand obtained from Hwangryong River in Jangsung. Batch and column studies were used to simulate managed aquifer recharge (MAR) systems. All experiments were performed using field effluent containing pharmaceuticals from Damyang Wastewater Treatment Plant as an influent. Based on the removal results of organic matter and pharmaceuticals from the batch and column experiments, soil organic matter (SOM) and microbial activity were found to effectively remove target contaminants. The removal of organic matter was found to increase under biotic conditions. Neutral and cation pharmaceuticals (iopromide, estrone, and trimethoprim) exhibited removal efficiencies higher than 70% from natural sand and baked sand media in batch and column studies. Carbamazepine persisted in the sand batch and column studies. Anion pharmaceuticals (ketoprofen, ibuprofen, and diclofenac) can be removed under conditions featuring high SOM and adenosine triphosphate (ATP) concentrations in the sand surface. Based on the experimental Batch and column results, biodegradation and sorption were found to be important mechanisms for the removal of pharmaceuticals within the simulated MAR systems.

본 연구에서는 장성에 위치한 황룡강에서 채취한 모래를 이용하여 유기물질과 의약화합물 제거효율을 평가하고 의약화합물의 제거 메커니즘을 규명하고자 하였다. 회분식 실험 및 칼럼 실험으로 대수층 함양관리기술을 모사하였으며, 모든 실험은 담양 하수처리장의 의약화합물이 포함된 최종방류수를 원수로 하여 구동하였다. 회분식 실험 및 칼럼 실험을 통해 유기물질과 의약화합물은 토양 유기물질과 미생물 활성도에 영향을 받아 제거되는 것을 보였다. 유기물질 제거는 생물학적 조건에서 잘 되는 것으로 나타났다. 중성과 양이온 의약화합물(iopromide, estrone 및 trimethoprim)의 경우에는 일반 모래, 구운 모래를 사용한 회분식 실험 모두 70% 이상의 제거효율을 나타냈다. 반면, carbamazepine의 경우는 회분식과 칼럼 실험에서 제거가 잘 이루어지지 않았다. 음이온 의약화합물 (ketoprofen, ibufrofen 및 diclofenac)의 경우 모래 표면의 SOM과 미생물 활성도에 영향을 받아 제거가 되는 것을 보였다. 회분식과 칼럼 실험을 바탕으로 생물학적 영향과 수착이 대수층 함양관리기술에서 의약화합물 제거에 주요한 메커니즘으로 나타났다.

Keywords

References

  1. Kim, Y. C. and Kim, Y. J., "A review on the state of the art in the management of aquifer recharge," J. Geol. Soc. Korea, 46(5), 521-533(2010).
  2. Maeng, S. K., Sharma, S. K., Abel, C. D. T., Magic-Knezev, A., Song, K.-G. and Amy, G. L., "Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study," J. Contam. Hydro., 140-141, 139-149(2012). https://doi.org/10.1016/j.jconhyd.2012.08.005
  3. Ray, C., Grischek, T., Schubert, J., Wang, J. Z. and Speth, T. F., "A perspective of Riverbank filtration," J. American Water Works Assoc., 94, 149-160(2002).
  4. Kim, S. H., Park, Y. K. and Lee, C. H., "A Case Study on Optimum Design of Bank Filtration and Its Impacts on / of Environment at Iryong," J. Korean Soc. Environ. Eng., 21 (11), 2027-2039(1999).
  5. Choi, H. C., Kim, K. S. and Choi, J. S., Chung, K. J., Park, K. H., "Sorption and Transport of Contaminants in Dune Infiltration" J. Korean Soc. Environ. Eng., 19(10), 1307-1318 (1997).
  6. Kim, H. S. and Jeong, J. H., "Numerical Analysis of Horizontal Collector Well in Riverbank Filtration," J. Soil Groundw. Environ., 19(6), 1-10(2009). https://doi.org/10.7857/JSGE.2014.19.6.001
  7. Kim, S. H., "Comparison of Riverbank and Riverbed Filtrations in Korea," J. Korean Soc. Environ. Eng., 29(10), 1154-1162(2007).
  8. Li, D., Alidina, M., Ouf, M., Sharp, J. O., Saikaly, P. and Drewes, J. E., "Microbial community evolution during simulated managed aquifer recharge in response to different biodegradable dissolved organic carbon (BDOC) concentrations," Water Res., 47(7), 2421-2430(2013). https://doi.org/10.1016/j.watres.2013.02.012
  9. Hoppe-Jones, C., Oldham, G. and Drewes, J. E., "Attenuation of total organic carbon and unregulated trace organic chemicals in U.S. riverbank filtration systems," Water Res., 44, 4643-4659(2010). https://doi.org/10.1016/j.watres.2010.06.022
  10. Magic-Knezev, A. and Van der Kooij, D., "Optimisation and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment," Water Res., 38(18), 3971-3979(2004). https://doi.org/10.1016/j.watres.2004.06.017
  11. Bui, T. X. and Choi, H., "Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15," J. Hazard. Mater., 168(2-3), 602-608(2009). https://doi.org/10.1016/j.jhazmat.2009.02.072
  12. Vanderford, B. J., and Snyder, S. A., "Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/ tandem mass spectrometry," Environ. Sci. Technol., 40(23), 7312-7320(2006). https://doi.org/10.1021/es0613198
  13. Cha, W. S., Kim, J. W. and Choi, H. C., "Characterization of Biodegradable Dissolved Organic Carbon (BDOC) Contained in Wastewater Effluents," 25(2), 253-257(2003).
  14. Drewes, J. E. and Fox, P., "Behavior and characterization of residual organic compounds in wastewater used for indirect potable reuse," Water Sci. Technol., 40(4-5), 391-398(1999). https://doi.org/10.1016/S0273-1223(99)00522-3
  15. Maeng, S. K., Sharma, S. K., Lekkerkerker-Teunissen, K. and Amy, G. L., "Occurrence and fate of bulk organic matter and pharmaceutically active compounds in managed aquifer recharge: A review," Water Res., 45(10), 3015-3033(2011a). https://doi.org/10.1016/j.watres.2011.02.017
  16. Maeng, S. K., Sharma, S. K., Abel, C. D. T., Magic-Knezev, A. and Amy, G. L., "Role of biodegradation in the removal of pharmaceutically active compounds with different bulk organic matter characteristics through managed aquifer recharge: Batch and column studies," Water Res., 45(16), 4722-4736(2011b). https://doi.org/10.1016/j.watres.2011.05.043
  17. Grunheid, S., Amy, G. and Jekel, M., "Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge," Water Res., 39 (14), 3219-3228(2005). https://doi.org/10.1016/j.watres.2005.05.030
  18. Teerlink, J., Martinez-Hernandez, V., Higgins, C. P. and Drewes, J. E., "Removal of trace organic chemicals in onsite wastewater soil treatment units: A laboratory experiment," Water Res., 46(16), 5174-5184(2012). https://doi.org/10.1016/j.watres.2012.06.024
  19. Hudson, N., Baker, A., Ward, D., Reynolds, D. M., Brunsdon, C., Carliell-Marquet, C. and Browning, S., "Can fluorescence spectrometry be used as a surrogate for the Biochemical Oxygen Demand (BOD) test in water quality assessment? An example from South West England." Sci. Total Environ., 391(1), 149-158(2008). https://doi.org/10.1016/j.scitotenv.2007.10.054
  20. Stamatelatou, K., Frouda, C., Fountoulakis, M. S., Drillia, P., Kornaros, M. and Lyberatos, G., "Pharmaceuticals and health care products in wastewater effluents: the example of carbamazepine," Water Sci. Technol., 3(4), 131-137(2003).