DOI QR코드

DOI QR Code

A Performance Improvement of GLCM Based on Nonuniform Quantization Method

비균일 양자화 기법에 기반을 둔 GLCM의 성능개선

  • Cho, Yong-Hyun (School of Information Technology Eng., Catholic Univ. of Daegu)
  • 조용현 (대구가톨릭대학교 IT공학부)
  • Received : 2014.09.14
  • Accepted : 2015.02.09
  • Published : 2015.04.25

Abstract

This paper presents a performance improvement of gray level co-occurrence matrix(GLCM) based on the nonuniform quantization, which is generally used to analyze the texture of images. The nonuniform quantization is given by Lloyd algorithm of recursive technique by minimizing the mean square error. The nonlinear intensity levels by performing nonuniformly the quantization of image have been used to decrease the dimension of GLCM, that is applied to reduce the computation loads as a results of generating the GLCM and calculating the texture parameters by using GLCM. The proposed method has been applied to 30 images of $120{\times}120$ pixels with 256-gray level for analyzing the texture by calculating the 6 parameters, such as angular second moment, contrast, variance, entropy, correlation, inverse difference moment. The experimental results show that the proposed method has a superior computation time and memory to the conventional 256-level GLCM method without performing the quantization. Especially, 16-gray level by using the nonuniform quantization has the superior performance for analyzing textures to another levels of 48, 32, 12, and 8 levels.

본 논문에서는 비균일 양자화에 기반을 둔 영상의 질감분석에 널리 이용되고 있는 gray level co-occurrence matrix(GLCM)의 성능개선을 제안하였다. 여기서 비균일 양자화는 평균자승오차의 최소화를 위한 반복계산 기법인 Lloyd 알고리즘을 이용하였다. 이는 영상에서의 비균일 양자화 과정으로 얻어지는 비선형의 명암레벨을 GLCM의 생성에 이용함으로써 행렬의 차원을 감소시켜, GLCM의 생성과 질감특성 파라미터들의 계산에 따른 부하를 줄이기 위함이다. 제안된 기법을 30개의 $120{\times}120$ 픽셀의 256 그레이 레벨을 가진 영상들을 대상으로 적용하여 angular second moment, contrast, variance, entropy, correlation, inverse difference moment 6개의 질감특성 파라미터들을 각각 계산한 실험결과, 양자화를 수행하지 않은 256 레벨 GLCM에 비해 계산시간과 저장 공간에서 개선된 성능이 있음을 확인하였다. 특히 48, 32, 16, 12, 8의 비균일 양자화 레벨 중에서 16일 때 가장 우수한 질감특성분석 성능이 있음을 알 수 있었다.

Keywords

References

  1. M. Tuceryan and A. K. Jain, "Texture Analysis," The Handbook of Pattern Recognition and Computer Vision (2nd Edition), World Scientific Publishing Co., pp. 207-248, 1998
  2. https://courses.cs.washington.edu/courses/cse576/book/ch7.pdf
  3. A. Materka, M. Strzelecki, "Texture Analysis Methods - A Review," Technical University of Lodz, Institute of Electronics, COST B11 Report, Brussels 1998
  4. R. M. Haralick, "Statistical and Structural Approaches to Texture," Proc. of the IEEE, Vol. 67, No. 5, pp. 786-804, May 1979 https://doi.org/10.1109/PROC.1979.11328
  5. P. Mohanaiah, P. Sathyanarayana, and L. GuruKumar, "Image Texture Feature Extraction Using GLCM Approach," International Journal of Scientific and Research Pub., Vol 3, Issue 5, pp. 1-5, May 2013
  6. G. H. Kim, S. P. Choi, W. S. Yook, and H. G. Sohn, "Extraction of Urban Boundary Using Grey Level Co-Occurrence Matrix Method in Pancromatic Satellite Imagery," Journal of Korean Society Civil Engineers, Vol. 26, No. 1D, pp. 211-217, Jan. 2006.
  7. S. Lloyd, "Least Squares Quantization in PCM," IEEE Trans. on Information Theory, Vol. 28, No. 2, pp. 129-137, Mar. 1982 https://doi.org/10.1109/TIT.1982.1056489
  8. M. Mayer, 'Quantization of Images and Lloyd' Algorithm, Bachelor Thesis, Vienna Univ. of Tech., Sept. 2010
  9. http://www.mayang.com/textures