DOI QR코드

DOI QR Code

Design of Corrective Controllers for Model Matching of Switched Asynchronous Sequential Machines

스위칭 비동기 순차 머신을 위한 모델 정합 교정 제어기 설계

  • Yang, Jung-Min (School of Electronics Engineering, Kyungpook National University)
  • Received : 2014.08.01
  • Accepted : 2015.02.17
  • Published : 2015.04.25

Abstract

This paper presents the solution to model matching of switched asynchronous sequential machines by corrective control. We propose a model of switched asynchronous sequential machines, in which the system can have different dynamics of asynchronous machines governed by a pre-determined sequence of switching. The control objective is to derive a corrective control law so that the stable state behavior of the closed-loop system can match that of a prescribed model. A new skeleton matrix is defined to represent the reachability of the switched asynchronous machine, and a novel control scheme is presented that interweaves the switching signal and the corrective control procedure. A design algorithm for the proposed controller is illustrated in a case study.

본 논문에서는 교정 제어에 의한 스위칭 비동기 순차 머신의 모델 정합 문제를 다룬다. 스위칭 비동기 순차 머신은 스위칭 신호에 따라서 여러 개의 비동기 순차 머신 특성을 번갈아 가면서 가지는 시스템이라고 정의한다. 이번 연구에서 스위칭 시스템이 가질 수 있는 스위칭 시퀀스(sequence)는 일정하게 고정되어 있다고 가정한다. 제어 목적은 폐루프 시스템의 안정 상태 동작을 주어진 기준 모델과 일치시키는 교정 제어기의 존재조건을 규명하고 제어기를 설계하는 일이다. 이를 위해서 스위칭 비동기 머신이 가지는 도달가능성을 표현하는 새로운 skeleton 행렬을 도입하고 모델 정합 교정 제어기의 존재조건을 기술한다. 또한 사례 연구를 통해 스위칭 신호를 생성하면서 동시에 교정 제어 입력을 변화시키는 새로운 교정 제어 알고리듬을 예시한다.

Keywords

References

  1. J. Peng and J. Hammer, "Bursts and output feedback control of non-deterministic asynchronous sequential machines," European Journal of Control, vol. 18, no. 3, pp. 286-300, 2012. https://doi.org/10.3166/ejc.18.286-300
  2. X. Xu and Y. Hong, "Matrix approach to model matching of asynchronous sequential machines," IEEE Transactions on Automatic Control, vol. 58, no. 11, pp. 2974-2979, 2013. https://doi.org/10.1109/TAC.2013.2259957
  3. J.-M. Yang, "Fault-tolerant control of a class of asynchronous sequential machines with permanent faults," Automatica, vol. 50, no. 3, pp. 989-993, 2014. https://doi.org/10.1016/j.automatica.2013.12.034
  4. S. W. Kwak and J.-M. Yang, "Fault diagnosis and tolerance for asynchronous counters with critical races caused by total ionizing dose in space," Journal of Korean Institute of Intelligent Systems, vol. 22, no. 1, pp. 49-55, 2012. https://doi.org/10.5391/JKIIS.2012.22.1.49
  5. J.-M. Yang and S. W. Kwak, "Output feedback control of asynchronous sequential machines with disturbance inputs," Information Sciences, vol. 259, pp. 87-99, 2014. https://doi.org/10.1016/j.ins.2013.09.046
  6. Z. Sun and S. S. Ge, Switched Linear Systems: Control and Design, London: Springer-Verlag, 2006.
  7. B. J. Choi and P. P. Wang, "A Study on the design of a biologizing control system," Journal of Korean Institute of Intelligent Systems, vol. 14, no. 5, pp. 630-634, 2004. https://doi.org/10.5391/JKIIS.2004.14.5.630
  8. H. Li and Y. Wang, "Consistent stabilizability of switched boolean networks," Neural Networks, vol. 46, pp. 183-189, 2013. https://doi.org/10.1016/j.neunet.2013.05.012
  9. L. Sterpone and M. Violante, "Analysis of the robustness of the TMR-architecture in SRAM-based FPGAs," IEEE Transactions on Nuclear Science, vol. 53, no. 5, pp. 1545-1549, 2005.
  10. A. Saadatpour, I. Albert, and R. Albert, "Attractor analysis of asynchronous Boolean models of signal transduction networks," Journal of Theoretical Biology, vol. 266, no. 4, pp. 641-656, 2010. https://doi.org/10.1016/j.jtbi.2010.07.022
  11. Z. Kohavi and N. K. Jha, Switching and Finite Automata Theory, 3rd ed., Cambridge UK: Cambridge University Press, 2010.
  12. K.-S. Chong, B.-H. Gwee and J. S. Chang, "Design of several asynchronous-logic macrocells for a low-voltage micropower cell library," IET Circuits, Devices and Systems, vol. 1, no. 2, pp. 161-169, 2007. https://doi.org/10.1049/iet-cds:20060014