DOI QR코드

DOI QR Code

응축수를 활용한 열전 냉각장치의 회로 모델링 및 시뮬레이션

Circuit Modeling and Simulation for Thermoelectric Cooling System using Condensed Water

  • 이상윤 (연세대학교 전기전자공학과) ;
  • 장석윤 ((주)엘제이텍 & 한국전자통신연구원) ;
  • 박민용 (연세대학교 전기전자공학과) ;
  • 윤창용 (수원과학대학교 전기과)
  • Lee, Sang-Yun (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Jang, Sukyoon (LJTEC Co. Ltd & Electronics and Telecommunications Research Institute) ;
  • Park, Mignon (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Yoon, Changyong (Department of Electrical Engineering, Suwon Science College)
  • 투고 : 2015.02.02
  • 심사 : 2015.04.04
  • 발행 : 2015.04.25

초록

본 논문에서는 응축수를 활용하는 새로운 열전 냉각장치를 소개하고 이 냉각장치에 대한 전기적 등가회로 모델을 제안한다. 소개된 냉각장치는 수집된 응축수를 히트싱크로 분무함으로써 응축수를 처리함과 동시에 냉각 효율을 향상시킬 수 있다. 기존의 열전 냉각장치에 대한 회로 모델과 열전소자-응축수 간의 열교환 방정식을 결합함으로써 소개된 냉각장치의 전기적 등가회로 모델을 유도한다. 유도된 모델의 파라미터는 별도의 실험을 통한 데이터 측정 없이 열전소자의 데이터시트 정보만으로 결정되기 때문에 소개된 냉각장치의 제어기를 설계하는 단계에서 해당 모델이 유용하게 사용될 수 있다. 제안된 모델의 타당성을 모의실험을 통해 확인하고 기존의 열전 냉각장치와 성능을 비교함으로써 응축수를 활용한 열전 냉각장치의 우수성 또한 검증한다.

In this paper, a novel thermoelectric cooling system utilizing condensed water is introduced and its electrical equivalent circuit model is proposed. The introduced system can deals with the condensed water and improves efficiency by spraying the condensed water on heat sink. The electrical equivalent circuit model is derived by combining the circuit model of the classical thermoelectric cooling system with equation of heat exchange. Because the parameters of the model can be defined from not other experimental data but just the data sheet of the thermoelement, the model can be useful to design and develop the controller of the proposed system. We verify that the proposed model is valid and the introduced system is more efficient than the previous thermoelectric cooling system through simulations.

키워드

참고문헌

  1. S. Y. Yoo, "A Study on The Performance of Thermoelectric Module and Thermoelectric Cooling System," The Society Of Air-Conditioning And Refrigerating Engineers Of Korea, vol. 16, no. 1, pp. 62-69, 2004.
  2. S. T. Ro, and J. S. Seo, "Principles of Thermoelectric Refrigeration and System Design," Korean Journal of Refrigeration and Air Conditioning, vol. 19, no. 3, pp. 135-145, 1990.
  3. J. G. Stockholm, "Current state of Peltier cooling," Proceedings of the 16th International Conference on Thermoelectrics, pp. 37-46. 1997.
  4. S. Y. Lee, S. Jang, M. Park, and C. Yoon "Cooling System Control Based on Fuzzy Look-Up Table Using Temperature Sensor," Proceedings of KIIS Autumn Conference, vol. 24, no. 2, pp. 70-71, 2014.
  5. H. L. Tsai, and J. M. Lin, "Model Building and Simulation of Thermoelectric Module Using Matlab/Simulink," Journal of Electronic Materials, vol. 39, no. 9, pp. 2105-2111, Nov. 2009. https://doi.org/10.1007/s11664-009-0994-x
  6. S. Lineykin, and S. Ben-Yaakov, "Modeling and Analysis of Thermoelectric Modules," Power Electronics, IEEE Transactions on, vol. 43, no. 2, pp. 505-512, Mar. 2007.
  7. C. S. Han, S. M. Park, N. H. Kim, and S. Han, "SPICE-Compatible Modeling of a Microbolometer Package Including Thermoelectric Cooler," Journal of Sensor Science and Technology, vol. 22, no. 1, pp. 44-48, 2013. https://doi.org/10.5369/JSST.2013.22.1.44
  8. F. Völklein, G. Min, and D. M. Rowe, "Modeling of a microelectromechanical thermoelectric cooler," Sens. Actuators A, Phys., vol. 75, pp. 95-101, 1999. https://doi.org/10.1016/S0924-4247(99)00002-3
  9. X. C. Xuan, K. C. Ng, C. Yap, and H. T. Chua, "A general model for studying effects of interface layers on thermoelectric devices performance," Int. J. Heat Mass Trans., vol. 45, no. 26, pp. 5159-5170, 2002. https://doi.org/10.1016/S0017-9310(02)00217-X