JKIIS

Received: Dec. 22, 2014
Revised : Apr. 6, 2015
Accepted: Apr. 9, 2015
${ }^{\dagger}$ Corresponding author(yunys@jejunu.ac.kr)

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Zadeh's extension principle for 2-dimensional triangular fuzzy numbers

2-차원 삼각퍼지수에 대한 Zadeh의 확장원리

Changil Kim* and Yong Sik Yun**
 김창일* 윤용식** ${ }^{*}$

*Department of Mathematics Education, Dankook University
**Department of Mathematics, Jeju National University
*단국대학교 수학교육과, **제주대학교 수학과

Abstract

A triangular fuzzy number is one of the most popular fuzzy numbers. Many results for the extended algebraic operations between two triangular fuzzy numbers are well-known. We generalize the triangular fuzzy numbers on \mathbb{R} to \mathbb{R}^{2}. By defining parametric operations between two regions valued α-cuts, we get the parametric operations for two triangular fuzzy numbers defined on \mathbb{R}^{2}.

Key Words : Extension Principle, Parametric Operation

요 약

삼각퍼지수는 가장 유명한 퍼지수 중의 하나이다. 두 삼각퍼지수 사이의 확장된 대수적 작용소에 대한 많은 결과들이 알려져 있다. 우리는 \mathbb{R} 위에 정의된 삼각퍼지수를 \mathbb{R}^{2} 위로 일반화하였다. 영역을 값으로 갖는 두 α-절단 사이에 매 개변수 작용소를 정의함으로서 \mathbb{R}^{2} 위에서 정의된 두 삼각퍼지수에 대한 매개변수 작용소를 얻을 수 있었다.

키워드 : 확장원리, 매개변수 작용소

1. Introduction

A fuzzy set is characterized by its membership function. The membership function of triangular fuzzy number is very simple and consisting of monotonic increasing and decreasing functions. Thus a triangular fuzzy number defined on \mathbb{R} is one of the most famous fuzzy number and many results for the extended algebraic operations between two triangular fuzzy numbers are well-known. The main idea of calculation of operations is to use the α-cuts.
In this paper, we generate the triangular fuzzy numbers on \mathbb{R} to \mathbb{R}^{2}. By defining parametric operations between two regions valued α-cuts, we get the parametric operations for two triangular fuzzy numbers defined on \mathbb{R}^{2}.

2. Preliminaries

We define α-cut and α-set of the fuzzy set A on \mathbb{R} with the membership function $\mu_{A}(x)$.

Definition 2.1. An α-cut of the fuzzy number A is defined by $A_{\alpha}=\left\{x \in \mathbb{R} \mid \mu_{A}(x) \geq \alpha\right\}$ if $\alpha \in(0,1] \quad$ and $A_{0}=\operatorname{cl}\left\{x \in \mathbb{R} \mid \mu_{A}(x)>0\right\}$. For $\alpha \in(0,1)$, the set $A^{\alpha}=\left\{x \in \mathbb{R} \mid \mu_{A}(x)=\alpha\right\}$ is said to be the α-set of the fuzzy set A, A^{0} and A^{1} are the boundary of $\left\{x \in \mathbb{R} \mid \mu_{A}(x)>0\right\}$ and $\left\{x \in \mathbb{R} \mid \mu_{A}(x)=1\right\}$, respectively.

In the calculations between two fuzzy numbers, the concept of α-cut is very important. Furthermore, some operations between α-cuts are very useful and α-set plays a very important role in a 2-dimensional case. Let X be a set.

Definition 2.2.([6]) A fuzzy set A is convex if

$$
\mu_{A}\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \min \left(\mu_{A}\left(x_{1}\right), \mu_{A}\left(x_{2}\right)\right),
$$

for all $x_{1}, x_{2} \in X$ and $\lambda \in[0,1]$.

Zadeh had defined the extension principle([5]). Zimmermann introduced the same basic concepts in [6] as follows:

Definition 2.3.([6]) Let $X=X_{1} \times \cdots \times X_{n}$ be a cartesian product and μ_{i} be a fuzzy set in X_{i}, respectively, and $f: X \rightarrow Y$ be a mapping. Then the extension principle allows us to define a fuzzy set ν in Y by

$$
\nu(y)=\sup _{\left(x_{1}, \cdots, x_{n} \in f^{-1}(y)\right.} \min \left\{\mu_{1}\left(x_{1}\right), \cdots, \mu_{n}\left(x_{n}\right)\right\}
$$

if $f^{-1}(y) \neq \varnothing$ and $\nu(y)=0$ if $f^{-1}(y)=\varnothing$.

For $n=1$, the extension principle reduces to a fuzzy set $\nu=f(\mu)$ defined by

Definition 2.4.([6]) The extended addition $A(+) B$, extended subtraction $A(-) B$, extended multiplication $A(\cdot) B$ and extended division $A(/) B$ are fuzzy sets with membership functions as follows. For $x \in A, y \in B$,
(1) $\mu_{A(+) B}(z)=\sup _{z=x+y} \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}$
(2) $\mu_{A(-) B}(z)=\sup _{z=x-y} \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}$
(3) $\mu_{A(\cdot) B}(z)=\sup _{z=x \cdot y} \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}$
(4) $\mu_{A(/) B}(z)=\sup _{z=x / y} \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}$

Remark 2.5.([2]) Let A and B be fuzzy sets and $A_{\alpha}=\left[a_{1}^{(\alpha)}, a_{2}^{(\alpha)}\right]$ and $B_{\alpha}=\left[b_{1}^{(\alpha)}, b_{2}^{(\alpha)}\right]$ be the α-cuts of A and B, respectively. Then the α-cuts of $A(+) B, A(-) B, A(\cdot) B$ and $A(/) B$ can be calculated as follows.
(1) $(A(+) B)_{\alpha}=A_{\alpha}(+) B_{\alpha}=\left[a_{1}^{(\alpha)}+b_{1}^{(\alpha)}, a_{2}^{(\alpha)}+b_{2}^{(\alpha)}\right]$
(2) $(A(-) B)_{\alpha}=A_{\alpha}(-) B_{\alpha}=\left[a_{1}^{(\alpha)}-b_{2}^{(\alpha)}, a_{2}^{(\alpha)}-b_{1}^{(\alpha)}\right]$
(3) $(A(\cdot) B)_{\alpha}=A_{\alpha}(\cdot) B_{\alpha}=\left[a_{1}^{(\alpha)} b_{1}^{(\alpha)}, a_{2}^{(\alpha)} b_{2}^{(\alpha)}\right]$
(4) $(A(/) B)_{\alpha}=A_{\alpha}(/) B_{\alpha}=\left[a_{1}^{(\alpha)} / b_{2}^{(\alpha)}, a_{2}^{(\alpha)} / b_{1}^{(\alpha)}\right]$

Let X be a real line \mathbb{R}.

Definition 2.6.([6]) A fuzzy number A is a convex fuzzy set on \mathbb{R} such that
(1) there exists unique $x \in \mathbb{R}$ with $\mu_{A}(x)=1$,
(2) $\mu_{A}(x)$ is piecewise continuous.

We call the fuzzy number A is continuous if the membership function $\mu_{A}(x)$ of A is continuous. If A is a continuous fuzzy number, then the α-cut A_{α} of A is a closed interval in \mathbb{R}.

One of the most famous fuzzy numbers is the triangular fuzzy number. And many results on a triangular fuzzy number have been suggested in many studies.

Definition 2.7. A triangular fuzzy number on \mathbb{R} is a fuzzy number A which has a membership function

$$
\mu_{A}(x)=\left\{\begin{array}{cl}
0, & x<a_{1}, a_{3} \leq x, \\
\frac{x-a_{1}}{a_{2}-a_{1}}, & a_{1} \leq x<a_{2}, \\
\frac{a_{3}-x}{a_{3}-a_{2}}, & a_{2} \leq x<a_{3} .
\end{array}\right.
$$

where $a_{i} \in \mathbb{R}, i=1,2,3$. It is denoted by $A=\left(a_{1}, a_{2}, a_{3}\right)$.

We defined the parametric operations for two fuzzy numbers defined on \mathbb{R} and showed that the results for parametric operations are the same as those for the extended operations $[[1])$. For this, we proved that for all fuzzy numbers A and all $\alpha \in[0,1]$, there exists a piecewise continuous function $f_{\alpha}(t)$ defined on $[0,1]$ such that $A_{\alpha}=\left\{f_{\alpha}(t) \mid t \in[0,1]\right\}$. If A is continuous, then the corresponding function $f_{\alpha}(t)$ is also continuous. The corresponding function $f_{\alpha}(t)$ is said to be the parametric α-function of A. The parametric α-function of A is denoted by $f_{\alpha}(t)$ or $f_{A}(t)$.

Definition 2.8. Let A and B be two continuous fuzzy numbers defined on \mathbb{R} and $f_{A}(t), f_{B}(t)$ be the parametric α -functions of A and B, respectively. The parametric addition, parametric subtraction, parametric multiplication and parametric division are fuzzy numbers that have their α-cuts as follows.
(1) parametric addition $A(+)_{p} B$:

$$
\left(A(+)_{p} B\right)_{\alpha}=\left\{f_{A}(t)+f_{B}(t) \mid t \in[0,1]\right\}
$$

(2) parametric subtraction $A(-)_{p} B$:

$$
\left(A(-)_{p} B\right)_{\alpha}=\left\{f_{A}(t)-f_{B}(1-t) \mid t \in[0,1]\right\}
$$

(3) parametric multiplication $A(\cdot)_{p} B$:

$$
\left(A(\cdot)_{p} B\right)_{\alpha}=\left\{f_{A}(t) \cdot f_{B}(t) \mid t \in[0,1]\right\}
$$

(4) parametric division $A(/)_{p} B$:

$$
\left(A(/)_{p} B\right)_{\alpha}=\left\{f_{A}(t) / f_{B}(1-t) \mid t \in[0,1]\right\}
$$

Theorem 2.9.([1]) Let A and B be two continuous fuzzy numbers defined on \mathbb{R}. Then we have the followings.
(1) $A(+)_{p} B=A(+) B$
(2) $A(-)_{p} B=A(-) B$
(3) $A(\cdot)_{p} B=A(\cdot) B$
(4) $A(/)_{p} B=A(/) B$

Corollary 2.10.([1]) Let A and B be two triangular fuzzy numbers defined on \mathbb{R}. Then we have $A(+)_{p} B=A(+) B$, $A(-)_{p} B=A(-) B$, $A(\cdot)_{p} B=A(\cdot) B \quad$ and $A(/)_{p} B=A(/) B$.

3. 2-dimensional triangular fuzzy numbers

In this section, we define the 2-dimensional triangular fuzzy numbers on \mathbb{R}^{2} as a generalization of triangular fuzzy numbers on \mathbb{R}. Then we want to define the parametric operations between two 2-dimensional triangular fuzzy numbers. For that, we have to calculate operations between α-cuts in \mathbb{R}^{2}. The α-cuts are intervals in \mathbb{R} but regions in \mathbb{R}^{2}, which makes the existing method of calculations between α-cuts unusable. We interpret the existing method from a different perspective and apply the method to the region valued α-cuts on \mathbb{R}^{2}.

Definition 3.1. A fuzzy set A with a membership function

$$
\mu_{A}(x, y)=\left\{\begin{array}{c}
1-\sqrt{\frac{\left(x-x_{1}\right)^{2}}{a^{2}}+\frac{\left(y-y_{1}\right)^{2}}{b^{2}}}, \\
\quad b^{2}\left(x-x_{1}\right)^{2}+a^{2}\left(y-y_{1}\right)^{2} \leq a^{2} b^{2},
\end{array}\right.
$$

where $a, b>0$ is called the 2-dimensional triangular fuzzy number and denoted by $\left(a, x_{1}, b, y_{1}\right)^{2}$.

Note that $\mu_{A}(x, y)$ is a cone. The intersections of $\mu_{A}(x, y)$ and the horizontal planes $z=\alpha(0<\alpha<1)$ are ellipses. The intersections of $\mu_{A}(x, y)$ and the vertical planes $y-y_{1}=k\left(x-x_{1}\right)(k \in \mathbb{R})$ are symmetric triangular fuzzy numbers in those planes. If $a=b$, ellipses become circles. The α-cut A_{α} of a 2-dimensional triangular fuzzy number $A=\left(a, x_{1}, b, y_{1}\right)^{2}$ is an interior of ellipse in an $x y$-plane including the boundary

$$
\begin{aligned}
A_{\alpha} & =\left\{(x, y) \in \mathbb{R}^{2} \mid b^{2}\left(x-x_{1}\right)^{2}+a^{2}\left(y-y_{1}\right)^{2}\right. \\
& \left.\leq a^{2} b^{2}(1-\alpha)^{2}\right\} \\
= & \left\{(x, y) \in \mathbb{R}^{2} \left\lvert\,\left(\frac{x-x_{1}}{a(1-\alpha)}\right)^{2}+\left(\frac{y-y_{1}}{b(1-\alpha)}\right)^{2} \leq 1\right.\right\} .
\end{aligned}
$$

In Remark 2.5, if $A_{\alpha}=\left[a_{1}^{(\alpha)}, a_{2}^{(\alpha)}\right]$ is the α-cut of
$A=\left(a_{1}, a_{2}, a_{3}\right) \quad$ and $\quad B_{\alpha}=\left[b_{1}^{(\alpha)}, b_{2}^{(\alpha)}\right] \quad$ is the $\quad \alpha$-cut of $B=\left(b_{1}, b_{2}, b_{3}\right)$, then

$$
(A(+) B)_{\alpha}=A_{\alpha}(+) B_{\alpha}=\left[a_{1}^{(\alpha)}+b_{1}^{(\alpha)}, a_{2}^{(\alpha)}+b_{2}^{(\alpha)}\right] .
$$

However, in a 2-dimensional case, $A_{\alpha}(+) B_{\alpha}$ can not be calculated by the same way since α-cuts are not intervals but subsets of \mathbb{R}^{2}. For the calculation in a 2-dimensional case, we consider the operations of α-cuts on \mathbb{R} by using a parameter as in Definition 2.8.

Definition 3.2. A 2-dimensional fuzzy number A defined on \mathbb{R}^{2} is called convex fuzzy number if for all $\alpha \in(0,1)$, the α -cuts

$$
A_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2} \mid \mu_{A}(x, y) \geq \alpha\right\}
$$

are convex subsets in \mathbb{R}^{2}.
Theorem 3.3. Let A be a convex fuzzy number defined on \mathbb{R}^{2} and $A^{\alpha}=\left\{(x, y) \in \mathbb{R}^{2} \mid \mu_{A}(x, y)=\alpha\right\}$ be the α-set of A. Then for all $\alpha \in(0,1)$, there exist piecewise continuous functions $f_{1}^{\alpha}(t)$ and $f_{2}^{\alpha}(t)$ defined on $[0,2 \pi]$ such that

$$
A^{\alpha}=\left\{\left(f_{1}^{\alpha}(t), f_{2}^{\alpha}(t)\right) \in \mathbb{R}^{2} \mid 0 \leq t \leq 2 \pi\right\}
$$

Proof. Let $\alpha \in(0,1)$ be fixed. Since A is a convex fuzzy number defined on \mathbb{R}^{2}, the α-cut A_{α} is convex subset in \mathbb{R}^{2}. Let

$$
l=\inf \left\{x \mid \mu_{A}(x, y)=\alpha\right\} \text { and } m=\sup \left\{x \mid \mu_{A}(x, y)=\alpha\right\}
$$

The upper boundary of A_{α} is the graph of a piecewise continuous concave function $h_{1}(x)$ and the lower boundary of A_{α} is also the graph of a piecewise continuous convex function $h_{2}(x)$ defined on $[l, m]$.
Since $h_{1}(x)$ is piecewise continuous, $h_{1}(x)$ is continuous on [l, m] except finitely many points $l<x_{n}<x_{n-1}<\cdots<x_{1}<m$. Note that x_{1} and x_{n} may equal to the end points m and l, respectively. Similarly, since $h_{2}(x)$ is also piecewise continuous, $h_{2}(x)$ is continuous on [l,m] except finitely many points $l<x_{n+1}<x_{n+2}<\cdots<x_{n+m}<m$. Note that x_{n+1} and x_{n+m} may equal to the end points l and m, respectively. If the end points l and m (or one of them) equal to some x_{i}, we can prove the above facts similarly. Define

$$
f_{1}^{\alpha}(t)=\frac{1}{2}(m-l)(\cos t-1)+m, \text { if } t \in[0, \pi],
$$

except the points

$$
t_{i} \cos ^{-1}\left(\frac{2\left(x_{i}-m\right)}{m-l}+1\right), i=1,2, \cdots, n .
$$

Then $f_{1}^{\alpha}(t)$ is piecewise continuous on $[0, \pi]$ and

$$
\begin{aligned}
\{l & \left.\leq x \leq m \mid x \neq x_{i}, i=1,2, \cdots, n\right\} \\
& =\left\{f_{1}^{\alpha}(t) \mid t \in[0, \pi], t \neq t_{i}, i=1,2, \cdots, n\right\} .
\end{aligned}
$$

Define

$$
f_{1}^{\alpha}(t)=\frac{1}{2}(m-l)(\cos t-1)+m, \text { if } t \in[\pi, 2 \pi],
$$

except the points

$$
t_{j}=\cos ^{-1}\left(\frac{2\left(x_{n+j}-m\right)}{m-l}+1\right), j=1,2, \cdots, m .
$$

Then $f_{1}^{\alpha}(t)$ is piecewise continuous on $[\pi, 2 \pi]$ and

$$
\begin{aligned}
& \left\{l \leq x \leq m \mid x \neq x_{n+j}, j=1,2, \cdots, m\right\} \\
& \quad=\left\{f_{1}^{\alpha}(t) \mid t \in[\pi, 2 \pi], t \neq t_{n+j}, j=1,2, \cdots, m\right\} .
\end{aligned}
$$

The explicit proof for piecewise continuity can be proved by the same way in the proof of Theorem 3.2([1]). Focussing the construction of functions $f_{1}^{\alpha}(t)$ and $f_{2}^{\alpha}(t)$, we outline our proof. Define $f_{1}^{\alpha}(t)$ and $f_{2}^{\alpha}(t)$ by

$$
f_{1}^{\alpha}(t)=\frac{1}{2}(m-l)(\cos t-1)+m, t \in[0,2 \pi],
$$

and

$$
f_{2}^{\alpha}(t)= \begin{cases}h_{1}\left(f_{1}^{\alpha}(t)\right), & 0 \leq t \leq \pi \\ h_{2}\left(f_{1}^{\alpha}(t)\right), & \pi \leq t \leq 2 \pi\end{cases}
$$

Then we have $A^{\alpha}=\left\{\left(f_{1}^{\alpha}(t), f_{2}^{\alpha}(t)\right) \in \mathbb{R}^{2} \mid 0 \leq t \leq 2 \pi\right\}$. The proof is complete.

If A is a continuous convex fuzzy number defined on \mathbb{R}^{2}, then the α-set A^{α} is a closed circular convex subset in \mathbb{R}^{2}.

Corollary 3.4. Let A be a continuous convex fuzzy number defined on \mathbb{R}^{2} and $A^{\alpha}=\left\{(x, y) \in \mathbb{R}^{2} \mid \mu_{A}(x, y)=\alpha\right\}$ be the α-set of A. Then for all $\alpha \in(0,1)$, there exist continuous functions $f_{1}^{\alpha}(t)$ and $f_{2}^{\alpha}(t)$ defined on $[0,2 \pi]$ such that

$$
A^{\alpha}=\left\{\left(f_{1}^{\alpha}(t), f_{2}^{\alpha}(t)\right) \in \mathbb{R}^{2} \mid 0 \leq t \leq 2 \pi\right\} .
$$

Definition 3.5. Let A and B be convex fuzzy numbers de-
fined on \mathbb{R}^{2} and

$$
\begin{aligned}
& A^{\alpha}=\left\{(x, y) \in \mathbb{R}^{2} \mid \mu_{A}(x, y)=\alpha\right\} \\
& =\left\{\left(f_{1}^{\alpha}(t), f_{2}^{\alpha}(t)\right) \in \mathbb{R}^{2} \mid 0 \leq t \leq 2 \pi\right\} \\
& B^{\alpha}=\left\{(x, y) \in \mathbb{R}^{2} \mid \mu_{B}(x, y)=\alpha\right\} \\
& =\left\{\left(g_{1}^{\alpha}(t), g_{2}^{\alpha}(t)\right) \in \mathbb{R}^{2} \mid 0 \leq t \leq 2 \pi\right\}
\end{aligned}
$$

be the α-sets of A and B, respectively. For $\alpha \in(0,1)$, we define that the parametric addition, parametric subtraction, parametric multiplication and parametric division of two fuzzy numbers A and B are fuzzy numbers that have their α-sets as follows.
(1) parametric addition $A(+)_{p} B$:

$$
\begin{gathered}
\left(A(+)_{p} B\right)^{\alpha}=\left\{\left(f_{1}^{\alpha}(t)+g_{1}^{\alpha}(t), f_{2}^{\alpha}(t)+g_{2}^{\alpha}(t)\right) \in \mathbb{R}^{2} \mid\right. \\
0 \leq t \leq 2 \pi\}
\end{gathered}
$$

(2) parametric subtraction $A(-)_{p} B$:

$$
\left(A(-)_{p} B\right)^{\alpha}=\left\{\left(x_{\alpha}(t), y_{\alpha}(t)\right) \in \mathbb{R}^{2} \mid 0 \leq t \leq 2 \pi\right\}
$$

where

$$
x_{\alpha}(t)= \begin{cases}f_{1}^{\alpha}(t)-g_{1}^{\alpha}(t+\pi), & \text { if } 0 \leq t \leq \pi \\ f_{1}^{\alpha}(t)-g_{1}^{\alpha}(t-\pi), & \text { if } \pi \leq t \leq 2 \pi\end{cases}
$$

and

$$
y_{\alpha}(t)= \begin{cases}f_{2}^{\alpha}(t)-g_{2}^{\alpha}(t+\pi), & \text { if } 0 \leq t \leq \pi \\ f_{2}^{\alpha}(t)-g_{2}^{\alpha}(t-\pi), & \text { if } \pi \leq t \leq 2 \pi\end{cases}
$$

(3) parametric multiplication $A(\cdot)_{p} B$:

$$
\begin{gathered}
\left(A(\cdot)_{p} B\right)^{\alpha}=\left\{\left(f_{1}^{\alpha}(t) \cdot g_{1}^{\alpha}(t), f_{2}^{\alpha}(t) \cdot g_{2}^{\alpha}(t)\right) \in \mathbb{R}^{2} \mid\right. \\
0 \leq t \leq 2 \pi\}
\end{gathered}
$$

(4) parametric division $A(/)_{p} B$:

$$
\left(A(/)_{p} B\right)^{\alpha}=\left\{\left(x_{\alpha}(t), y_{\alpha}(t)\right) \in \mathbb{R}^{2} \mid 0 \leq t \leq 2 \pi\right\}
$$

where

$$
\begin{aligned}
& x_{\alpha}(t)=\frac{f_{1}^{\alpha}(t)}{g_{1}^{\alpha}(t+\pi)} \quad(0 \leq t \leq \pi), \\
& x_{\alpha}(t)=\frac{f_{1}^{\alpha}(t)}{g_{1}^{\alpha}(t-\pi)}(\pi \leq t \leq 2 \pi), \\
& y_{\alpha}(t)=\frac{f_{2}^{\alpha}(t)}{g_{2}^{\alpha}(t+\pi)}(0 \leq t \leq \pi), \\
& y_{\alpha}(t)=\frac{f_{2}^{\alpha}(t)}{g_{2}^{\alpha}(t-\pi)}(\pi \leq t \leq 2 \pi) .
\end{aligned}
$$

For $\quad \alpha=0, \quad\left(A(*)_{p} B\right)^{0}=\lim _{\alpha \rightarrow 0^{+}}\left(A(*)_{p} B\right)^{\alpha} \quad$ and \quad if $\quad \alpha=1$, $\left(A(*)_{p} B\right)^{1}=\lim _{\alpha \rightarrow 1^{-}}\left(A(*)_{p} B\right)^{\alpha}$, where $*=+,-, \cdot, /$.

Theorem 3.6. Let $A=\left(a_{1}, x_{1}, b_{1}, y_{1}\right)^{2}$ and $B=\left(a_{2}, x_{2}\right.$, $\left.b_{2}, y_{2}\right)^{2}$ be two 2 -dimensional triangular fuzzy numbers. Then we have the following.
(1) $A(+)_{p} B=\left(a_{1}+a_{2}, x_{1}+x_{2}, b_{1}+b_{2}, y_{1}+y_{2}\right)^{2}$
(2) $A(-)_{p} B=\left(a_{1}+a_{2}, x_{1}-x_{2}, b_{1}+b_{2}, y_{1}-y_{2}\right)^{2}$
(3) $\left(A(\cdot)_{p} B\right)^{\alpha}=\left\{\left(x_{\alpha}(t), y_{\alpha}(t)\right) \mid 0 \leq t \leq 2 \pi\right\}$, where

$$
\begin{aligned}
x_{\alpha}(t)= & x_{1} x_{2+}\left(x_{1} a_{2}+x_{2} a_{1}\right)(1-\alpha) \cos t \\
& +a_{1} a_{2}(1-\alpha)^{2} \cos ^{2} t, \\
y_{\alpha}(t)= & y_{1} y_{2}+\left(y_{1} b_{2}+y_{2} b_{1}\right)(1-\alpha) \sin t \\
& +b_{1} b_{2}(1-\alpha)^{2} \sin ^{2} t .
\end{aligned}
$$

(4) $\left(A(/)_{p} B\right)^{\alpha}=\left\{\left(x_{\alpha}(t), y_{\alpha}(t)\right) \mid 0 \leq t \leq 2 \pi\right\}$, where

$$
\begin{aligned}
& x_{\alpha}(t)=\frac{x_{1}+a_{1}(1-\alpha) \cos t}{x_{2}-a_{2}(1-\alpha) \cos t}, \\
& y_{\alpha}(t)=\frac{y_{1}+b_{1}(1-\alpha) \sin t}{y_{2}-b_{2}(1-\alpha) \sin t} .
\end{aligned}
$$

Thus $A(+)_{p} B$ and $A(-)_{p} B$ become 2-dimensional triangular fuzzy numbers, but $A(\cdot)_{p} B$ and $A(/)_{p} B$ need not to be 2-dimensional triangular fuzzy numbers.

Proof. Since A and B are convex fuzzy numbers defined on \mathbb{R}^{2}, by Theorem 3.3, there exists $f_{i}^{\alpha}(t), g_{i}^{\alpha}(t)(i=1,2)$ such that

$$
\begin{aligned}
A^{\alpha} & =\left\{(x, y) \in \mathbb{R}^{2} \mid \mu_{A}(x, y)=\alpha\right\} \\
& =\left\{\left(f_{1}^{\alpha}(t), f_{2}^{\alpha}(t)\right) \in \mathbb{R}^{2} \mid 0 \leq t \leq 2 \pi\right\} \\
B^{\alpha} & =\left\{(x, y) \in \mathbb{R}^{2} \mid \mu_{B}(x, y)=\alpha\right\} \\
& =\left\{\left(g_{1}^{\alpha}(t), g_{2}^{\alpha}(t)\right) \in \mathbb{R}^{2} \mid 0 \leq t \leq 2 \pi\right\}
\end{aligned}
$$

Since $A=\left(a_{1}, x_{1}, b_{1}, y_{1}\right)^{2}$ and $B=\left(a_{2}, x_{2}, b_{2}, y_{2}\right)^{2}$, we have

$$
\begin{aligned}
& f_{1}^{\alpha}(t)=x_{1}+a_{1}(1-\alpha) \cos t, f_{2}^{\alpha}(t)=y_{1}+b_{1}(1-\alpha) \sin t, \\
& g_{1}^{\alpha}(t)=x_{2}+a_{2}(1-\alpha) \cos t, g_{2}^{\alpha}(t)=y_{2}+b_{2}(1-\alpha) \sin t .
\end{aligned}
$$

(1) Since

$$
\begin{gathered}
f_{1}^{\alpha}(t)+g_{1}^{\alpha}(t)=x_{1}+x_{2}+\left(a_{1}+a_{2}\right)(1-\alpha) \cos t, \\
f_{2}^{\alpha}(t)+g_{2}^{\alpha}(t)=y_{1}+y_{2}+\left(b_{1}+b_{2}\right)(1-\alpha) \sin t
\end{gathered}
$$

we have

$$
\begin{aligned}
\left(A(+)_{p} B\right)^{\alpha}=\left\{(x, y) \in \mathbb{R}^{2} \mid\right. & \left(\frac{x-x_{1}-x_{2}}{\left(a_{1}+a_{2}\right)(1-\alpha)}\right)^{2} \\
& \left.+\left(\frac{y-y_{1}-y_{2}}{\left(b_{1}+b_{2}\right)(1-\alpha)}\right)^{2}=1\right\} .
\end{aligned}
$$

Thus $A(+)_{p} B=\left(a_{1}+a_{2}, x_{1}+x_{2}, b_{1}+b_{2}, y_{1}+y_{2}\right)^{2}$.
(2) If $0 \leq t \leq \pi$,
$f_{1}^{\alpha}(t)-g_{1}^{\alpha}(t+\pi)=x_{1}-x_{2}+\left(a_{1}+a_{2}\right)(1-\alpha) \cos t$,
$f_{2}^{\alpha}(t)-g_{2}^{\alpha}(t+\pi)=y_{1}-y_{2}+\left(b_{1}+b_{2}\right)(1-\alpha) \sin t$.

In the case of $\pi \leq t \leq 2 \pi$, we have

$$
\begin{gathered}
f_{1}^{\alpha}(t)-g_{1}^{\alpha}(t-\pi)=f_{1}^{\alpha}(t)-g_{1}^{\alpha}(t+\pi), \\
f_{2}^{\alpha}(t)-g_{2}^{\alpha}(t-\pi)=f_{2}^{\alpha}(t)-g_{2}^{\alpha}(t+\pi) .
\end{gathered}
$$

Thus

$$
\begin{aligned}
\left(A(-)_{p} B\right)^{\alpha}=\left\{(x, y) \in \mathbb{R}^{2} \mid\right. & \left(\frac{x-x_{1}+x_{2}}{\left(a_{1}+a_{2}\right)(1-\alpha)}\right)^{2} \\
& \left.+\left(\frac{y-y_{1}+y_{2}}{\left(b_{1}+b_{2}\right)(1-\alpha)}\right)^{2}=1\right\},
\end{aligned}
$$

i.e., $A(-)_{p} B=\left(a_{1}+a_{2}, x_{1}-x_{2}, b_{1}+b_{2}, y_{1}-y_{2}\right)^{2}$.
(3) Let $\left(A(\cdot)_{p} B\right)^{\alpha}=\left\{\left(x_{\alpha}(t), y_{\alpha}(t)\right) \mid 0 \leq t \leq 2 \pi\right\}$.

Since

$$
\begin{gathered}
f_{1}^{\alpha}(t)+g_{1}^{\alpha}(t)=x_{1}+x_{2}+\left(a_{1}+a_{2}\right)(1-\alpha) \cos t, \\
f_{2}^{\alpha}(t)+g_{2}^{\alpha}(t)=y_{1}+y_{2}+\left(b_{1}+b_{2}\right)(1-\alpha) \sin t
\end{gathered}
$$

we have

$$
\begin{aligned}
x_{\alpha}(t)= & f_{1}^{\alpha}(t) \cdot g_{1}^{\alpha}(t)=x_{1} x_{2}+\left(x_{1} a_{2}+x_{2} a_{1}\right) \\
& \times(1-\alpha) \cos t+a_{1} a_{2}(1-\alpha)^{2} \cos ^{2} t, \\
y_{\alpha}(t)= & f_{2}^{\alpha}(t) \cdot g_{2}^{\alpha}(t)=y_{1} y_{2}+\left(y_{1} b_{2}+y_{2} b_{1}\right) \\
& \times(1-\alpha) \sin t+b_{1} b_{2}(1-\alpha)^{2} \sin ^{2} t .
\end{aligned}
$$

(4) Let $\left(A(/)_{p} B\right)^{\alpha}=\left\{\left(x_{\alpha}(t), y_{\alpha}(t)\right) \mid 0 \leq t \leq 2 \pi\right\}$.

Similarly, we have

$$
x_{\alpha}(t)=\frac{x_{1}+a_{1}(1-\alpha) \cos t}{x_{2}-a_{2}(1-\alpha) \cos t}, y_{\alpha}(t)=\frac{y_{1}+b_{1}(1-\alpha) \sin t}{y_{2}-b_{2}(1-\alpha) \sin t} .
$$

The proof is complete.
Example 3.7. Let $A=(6,3,8,5)^{2}$ and $B=(4,2,5,3)^{2}$. Then by Theorem 3.6, we have the following.
(1) $A(+)_{p} B=(10,5,13,8)^{2}$
(2) $A(-)_{p} B=(10,1,13,2)^{2}$
(3) $\left(A(\cdot)_{p} B\right)^{\alpha}=\left\{\left(x_{\alpha}(t), y_{\alpha}(t)\right) \mid 0 \leq t \leq 2 \pi\right\}$, where

$$
\begin{gathered}
x_{\alpha}(t)=6+24(1-\alpha) \cos t+24(1-\alpha)^{2} \cos ^{2} t \\
y_{\alpha}(t)=15+49(1-\alpha) \sin t+40(1-\alpha)^{2} \sin ^{2} t
\end{gathered}
$$

(4) $\left(A(/)_{p} B\right)^{\alpha}=\left\{\left(x_{\alpha}(t), y_{\alpha}(t)\right) \mid 0 \leq t \leq 2 \pi\right\}$, where

$$
x_{\alpha}(t)=\frac{3+6(1-\alpha) \cos t}{2-4(1-\alpha) \cos t}, y_{\alpha}(t)=\frac{5+8(1-\alpha) \sin t}{3-5(1-\alpha) \sin t} .
$$

Thus $A(+)_{p} B$ and $A(-)_{p} B$ become 2-dimensional triangular fuzzy numbers, but $A(\cdot)_{p} B$ and $A(/)_{p} B$ need not to be 2-dimensional triangular fuzzy numbers.

References

[1] J. Byun and Y. S. Yun, Parametric operations for two fuzzy number, Communications of Korean Mathematical Society, vol. 28, no. 3, pp. 635-642, 2013.
[2] A. Kaufmann and M. M. Gupta, Introduction To Fuzzy Arithmetic : Theory and Applications, Van Nostrand Reinhold Co., New York, 1985.
[3] Y. S. Yun, S. U. Ryu and J. W. Park, The generalized triangular fuzzy sets, Journal of the Chungcheong Mathematical Society, vol. 22, no. 2, pp. 161-170, 2009.
[4] Y. S. Yun, J. C. Song and J. W. Park, Normal fuzzy probability for quadratic fuzzy number, Journal of fuzzy logic and intelligent systems, vol. 15, no. 3, pp. 277-281, 2005.
[5] L. A. Zadeh, The concept of a linguistic variable and its ap-
plication to approximate reasoning - I, Infor- mation Sciences, vol. 8, pp. 199-249, 1975.
[6] H. J. Zimmermann, Fuzzy set Theory - and Its Applications, Kluwer-Nijhoff Publishing, Boston-Dordrecht-Lancaster, 1985.

저 자 소 개

김창일(Chang-II Kim)

1986년 : 단국대학교 수학교육학과 이학사
1988년 : 서강대학교 수학과 이학석사
1992년 : 서강대학교 수학과 이학박사
1993년~현재 : 단국대학교 수학교육학과
교수

관심분야 : Fuzzy, Topology, Functional Analysis
Phone : +82-31-8005-3832
E-mail : kci206@hanmail.net

윤용식(Yong Sik Yun)

1988년: 부산대학교 수학과 이학사
1990년 : 부산대학교 수학과 이학석사
1995년 : 교토대학 수학과 이학박사
1995년~현재 : 제주대학교 수학과 교수

관심분야 : Fuzzy Probability, Probability Theory
Phone : +82-64-754-3565
E-mail : yunys@jejunu.ac.kr

